找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Curvature Flow and Isoperimetric Inequalities; Manuel Ritoré,Carlo Sinestrari Textbook 2010 Birkh?user Basel 2010 Mean curvature.Mini

[復(fù)制鏈接]
樓主: 和尚吃肉片
11#
發(fā)表于 2025-3-23 10:51:16 | 只看該作者
Singular behaviour of convex surfacesIn the next two sections we shall see some results showing that, roughly speaking, the convexity properties of a surface evolving by mean curvature flow improve when a singularity is formed. We begin with the case of convex surfaces.
12#
發(fā)表于 2025-3-23 17:15:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:11 | 只看該作者
Mean curvature flow with surgeriesIn this section we describe the mean curvature flow with surgeries which has been defined in [48] for two-convex surfaces of dimension . ≥ 3. Such a construction is inspired by the one which was introduced by Hamilton [37] for the Ricci flow and which enabled Perelman [56] to prove the geometrization conjecture for three-dimensional manifolds.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Higher dimensionsUnlike surfaces, the use of the mean curvature flow in higher dimensions to prove isoperimetric inequalities is severely limited by the possibility of development of singularities. The reader is referred to Sinestrari’s course in this volume [113] for an updated discussion on these topics.
15#
發(fā)表于 2025-3-24 06:09:29 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:37 | 只看該作者
Mean Curvature Flow and Isoperimetric Inequalities978-3-0346-0213-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
17#
發(fā)表于 2025-3-24 13:18:56 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:15 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:54 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永安市| 德惠市| 定兴县| 南丹县| 石城县| 九龙城区| 雅江县| 平和县| 新巴尔虎左旗| 衡阳市| 根河市| 松江区| 岚皋县| 南丰县| 宾川县| 贵阳市| 武义县| 宁南县| 尉犁县| 丹凤县| 长宁县| 兰溪市| 都匀市| 徐闻县| 博罗县| 久治县| 夏河县| 通渭县| 青神县| 台湾省| 江口县| 阿拉尔市| 东方市| 怀来县| 山西省| 永寿县| 红安县| 抚宁县| 陇西县| 绥中县| 沈阳市|