找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems; Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: Magnanimous
11#
發(fā)表于 2025-3-23 11:24:44 | 只看該作者
HOSVD on Tensors and Its Extensions(i.e., user–item–tag). The main factorization method that will be presented in this chapter is higher order SVD (HOSVD), which is an extended version of the Singular Value Decomposition (SVD) method. In this chapter, we will present a step-by-step implementation of HOSVD in our toy example. Then we
12#
發(fā)表于 2025-3-23 16:02:44 | 只看該作者
Experimental Evaluation on Tensor Decomposition Methodsuss the criteria that we will set for testing all algorithms and the experimental protocol we will follow. Moreover, we will discuss the metrics that we will use (i.e., Precision, Recall, root-mean-square error, etc.). Our goal is to present the main factors that influence the effectiveness of algor
13#
發(fā)表于 2025-3-23 21:57:54 | 只看該作者
en nach bestimmten Glattheitsforderungen verheftet sind. Die Bezeichnung Spline-Funktionen (Spline Functions) geht auf I. J. Schoenberg [1946]zurück. Die so bezeichneten Funktionen waren jedoch schon früher immer wieder bei verschiedenen Aufgabenstellungen benutzt worden. So kann man etwa bereits da
14#
發(fā)表于 2025-3-23 23:44:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:19:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:42 | 只看該作者
Related Work on Matrix Factorizationmethod is CUR decomposition, which confronts the problem of high density in factorized matrices (a problem that is faced when using the SVD method). This chapter concludes with a description of other state-of-the-art matrix decomposition techniques.
17#
發(fā)表于 2025-3-24 12:03:56 | 只看該作者
HOSVD on Tensors and Its Extensionsr methods for leveraging the quality of recommendations. Finally, we will study limitations of HOSVD and discuss in detail the problem of non-unique tensor decomposition results and how we can deal with this problem. We also discuss other problems in tensor decomposition, e.g., actualization and scalability.
18#
發(fā)表于 2025-3-24 15:51:14 | 只看該作者
Introductionnsor decomposition methods (also known as factorization methods). In this chapter, we provide some basic definitions and preliminary concepts on dimensionality reduction methods of matrices and tensors. Gradient descent and alternating least squares methods are also discussed. Finally, we present the book outline and the goals of each chapter.
19#
發(fā)表于 2025-3-24 19:55:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云梦县| 灵山县| 乐至县| 仪陇县| 穆棱市| 大同市| 佳木斯市| 西宁市| 泸定县| 克拉玛依市| 河间市| 云南省| 个旧市| 高台县| 长顺县| 衡南县| 桂东县| 东阿县| 金门县| 徐水县| 历史| 彰化县| 金阳县| 厦门市| 集贤县| 五常市| 贵德县| 遂溪县| 如皋市| 隆林| 遂平县| 吐鲁番市| 修武县| 稷山县| 奉新县| 昂仁县| 双江| 磐石市| 于都县| 姚安县| 晋州市|