找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems; Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl

[復(fù)制鏈接]
查看: 46621|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:31:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems
編輯Panagiotis Symeonidis,Andreas Zioupos
視頻videohttp://file.papertrans.cn/628/627777/627777.mp4
概述Covers all emerging tasks and cutting-edge techniques in matrix and tensor factorization for recommender systems.Offers a rich blend of mathematical theory and practice for matrix and tensor decomposi
叢書(shū)名稱SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Matrix and Tensor Factorization Techniques for Recommender Systems;  Panagiotis Symeonidis,Andreas Zioupos Book 2016 The Editor(s) (if appl
描述.This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. . .The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, reco
出版日期Book 2016
關(guān)鍵詞Recommender Systems; Information Retrieval; Factorization Methods; Machine Learning; Matrix Factorizatio
版次1
doihttps://doi.org/10.1007/978-3-319-41357-0
isbn_softcover978-3-319-41356-3
isbn_ebook978-3-319-41357-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems影響因子(影響力)




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems被引頻次




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems被引頻次學(xué)科排名




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems年度引用




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems年度引用學(xué)科排名




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems讀者反饋




書(shū)目名稱Matrix and Tensor Factorization Techniques for Recommender Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:04 | 只看該作者
2191-5768 blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, reco978-3-319-41356-3978-3-319-41357-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
板凳
發(fā)表于 2025-3-22 01:07:03 | 只看該作者
ies eine vollst?ndige Aufz?hlung sein k?nnte. überhaupt ist die Entstehung der Theorie der Splines ein Beispiel für eine Entwicklung, die durch praktische Erfordernisse ins Leben gerufen wurde. Diese praktischen Erfordernisse bestanden damals in der Notwendigkeit, über anwendbare Methoden zur glatte
地板
發(fā)表于 2025-3-22 07:36:50 | 只看該作者
5#
發(fā)表于 2025-3-22 12:14:48 | 只看該作者
Matrix and Tensor Factorization Techniques for Recommender Systems
6#
發(fā)表于 2025-3-22 14:12:51 | 只看該作者
Introduction, and information retrieval. Recommender systems deal with challenging issues such as scalability, noise, and sparsity and thus, matrix and tensor factorization techniques appear as an interesting tool to be exploited. That is, we can deal with all aforementioned challenges by applying matrix and te
7#
發(fā)表于 2025-3-22 18:47:05 | 只看該作者
Related Work on Matrix Factorizationion, which decomposes the initial matrix into a canonical form. The second method is nonnegative matrix factorization (NMF), which factorizes the initial matrix into two smaller matrices with the constraint that each element of the factorized matrices should be nonnegative. The third method is laten
8#
發(fā)表于 2025-3-23 01:04:23 | 只看該作者
Performing SVD on Matrices and Its Extensionsal background and present (step by step) the SVD method using a toy example of a recommender system. We also describe in detail UV decomposition. This method is an instance of SVD, as we mathematically prove. We minimize an objective function, which captures the error between the predicted and real
9#
發(fā)表于 2025-3-23 01:49:56 | 只看該作者
Experimental Evaluation on Matrix Decomposition Methodsalgorithm combined with SVD. For the UV decomposition method, we will present the appropriate tuning of parameters of its objective function to have an idea of how we can get optimized values of its parameters. We will also answer the question if these values are generally accepted or they should be
10#
發(fā)表于 2025-3-23 06:30:40 | 只看該作者
Related Work on Tensor Factorizationrst method that is discussed is the Tucker Decomposition (TD) method, which is the underlying tensor factorization model of Higher Order Singular Value Decomposition. TD decomposes a tensor into a set of matrices and one small core tensor. The second one is the PARAFAC method (PARAllel FACtor analys
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
酉阳| 揭东县| 曲靖市| 呼图壁县| 泸州市| 达拉特旗| 罗甸县| 滦南县| 遂昌县| 宁陕县| 清苑县| 南木林县| 延川县| 普兰县| 汉川市| 屯昌县| 宝丰县| 睢宁县| 昌江| 九台市| 三穗县| 奉贤区| 昌吉市| 柘城县| 岚皋县| 科尔| 岱山县| 香格里拉县| 佛坪县| 香港 | 景宁| 宜君县| 丰县| 凉山| 溆浦县| 钟山县| 盐源县| 渝中区| 钟祥市| 南昌县| 阿拉善盟|