找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Aperiodic Order; Johannes Kellendonk,Daniel Lenz,Jean Savinien Book 2015 Springer Basel 2015 Pisot substitution conjecture.

[復制鏈接]
樓主: DEBUT
21#
發(fā)表于 2025-3-25 03:28:30 | 只看該作者
22#
發(fā)表于 2025-3-25 09:17:00 | 只看該作者
Linearly Repetitive Delone Sets, repetitive.We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.
23#
發(fā)表于 2025-3-25 15:16:53 | 只看該作者
24#
發(fā)表于 2025-3-25 19:28:07 | 只看該作者
Additive Properties of Sets and Substitutive Dynamics,points of weak mixing substitutions, we generate an assortment of central sets which reflect the rich combinatorial structure of the underlying words. One crucial additive property of central sets is that each central set contains all finite sums of distinct terms for some infinite increasing sequen
25#
發(fā)表于 2025-3-25 20:24:40 | 只看該作者
Delone Sets and Material Science: a Program, to describe very precisely what the anankeons are. A partition of the configuration space into contiguity domains leads to a graph on which a Markov process can be built to describe the anakeon dynamics. At last, a speculative Section is giving an attempt to describe the Continuous Mechanics of a c
26#
發(fā)表于 2025-3-26 03:50:13 | 只看該作者
Book 2015cs covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schr?dinger operators, and connections to arithmetic number theory..
27#
發(fā)表于 2025-3-26 07:09:12 | 只看該作者
0743-1643 s or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schr?dinger operators, and connections to arithmetic number theory..978-3-0348-0903-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
28#
發(fā)表于 2025-3-26 10:41:38 | 只看該作者
Jean-Baptiste Aujogue,Marcy Barge,Johannes Kellendonk,Daniel Lenz
29#
發(fā)表于 2025-3-26 16:13:43 | 只看該作者
José Aliste-Prieto,Daniel Coronel,María Isabel Cortez,Fabien Durand,Samuel Petite
30#
發(fā)表于 2025-3-26 17:03:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
滦平县| 隆化县| 衡山县| 乐业县| 沧州市| 郓城县| 灵台县| 马山县| 湖南省| 砀山县| 阜南县| 喀喇沁旗| 临清市| 土默特右旗| 南城县| 靖宇县| 临城县| 聂拉木县| 乐都县| 济宁市| 泽普县| 淮南市| 腾冲县| 同江市| 潮州市| 扶绥县| 泰宁县| 晋江市| 茂名市| 镇巴县| 湘西| 静海县| 贺兰县| 贵州省| 乌恰县| 涿州市| 福泉市| 盐源县| 贡嘎县| 南宫市| 玉溪市|