找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Aperiodic Order; Johannes Kellendonk,Daniel Lenz,Jean Savinien Book 2015 Springer Basel 2015 Pisot substitution conjecture.

[復(fù)制鏈接]
樓主: DEBUT
11#
發(fā)表于 2025-3-23 12:02:17 | 只看該作者
12#
發(fā)表于 2025-3-23 14:16:39 | 只看該作者
Tilings with Infinite Local Complexity,nfinitely many possible adjacencies, infinitely many shapes, or infinitely many labels. Our main requirement is that the set of tiles used to construct tilings should be compact..We consider tilings constructed in a number of ways, including the hierarchical methods of self-similarity, substitution,
13#
發(fā)表于 2025-3-23 19:27:15 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:17 | 只看該作者
Additive Properties of Sets and Substitutive Dynamics,tutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of N possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regu
15#
發(fā)表于 2025-3-24 04:51:36 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:32 | 只看該作者
Mathematics of Aperiodic Order978-3-0348-0903-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
17#
發(fā)表于 2025-3-24 13:04:34 | 只看該作者
18#
發(fā)表于 2025-3-24 18:15:19 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/m/image/626925.jpg
19#
發(fā)表于 2025-3-24 21:19:47 | 只看該作者
Spaces of Projection Method Patterns and their Cohomology,We explain from the basics why the ?ech cohomology of a tiling space can be realised in terms of group cohomology, and use this to explain how to compute the cohomology of a projection pattern.
20#
發(fā)表于 2025-3-25 02:11:27 | 只看該作者
Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets,We discuss the application of various concepts from the theory of topological dynamical systems to Delone sets and tilings. In particular, we consider the maximal equicontinuous factor of a Delone dynamical system, the proximality relation and the enveloping semigroup of such systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶南市| 昔阳县| 宣恩县| 易门县| 玛沁县| 余干县| 龙州县| 海伦市| 关岭| 白山市| 德惠市| 临安市| 神池县| 那坡县| 湄潭县| 崇州市| 虹口区| 南投市| 平阴县| 青川县| 土默特右旗| 姚安县| 滁州市| 图木舒克市| 清水河县| 长阳| 惠安县| 民丰县| 正蓝旗| 光泽县| 麦盖提县| 凤阳县| 崇阳县| 桃园县| 台安县| 奉新县| 阳新县| 毕节市| 兴安县| 天柱县| 黄大仙区|