找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Massively Parallel Evolutionary Computation on GPGPUs; Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復制鏈接]
查看: 10260|回復: 56
樓主
發(fā)表于 2025-3-21 19:55:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Massively Parallel Evolutionary Computation on GPGPUs
編輯Shigeyoshi Tsutsui,Pierre Collet
視頻videohttp://file.papertrans.cn/626/625368/625368.mp4
概述First book dedicated to exciting new approach.Content characterized by emphasis on solving practical problems.Valuable for researchers, practitioners, and graduate students.Includes supplementary mate
叢書名稱Natural Computing Series
圖書封面Titlebook: Massively Parallel Evolutionary Computation on GPGPUs;  Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A
描述.Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened up this possibility for parallel EAs, and this is the first book dedicated to this exciting development..?.The three chapters of Part I are tutorials, representing a comprehensive introduction to the approach, explaining the characteristics of the hardware used, and presenting a representative project to develop a platform for automatic parallelization of evolutionary computing (EC) on GPGPUs. The 10 chapters in Part II focus on how to consider key EC approaches in the light of this advanced computational technique, in particular addressing generic local search, tabu search, genetic algorithms
出版日期Book 2013
關鍵詞Artificial chemistries; CGP; Cartesian genetic programming; Clusters; Differential evolution; Evolutionar
版次1
doihttps://doi.org/10.1007/978-3-642-37959-8
isbn_softcover978-3-662-51345-3
isbn_ebook978-3-642-37959-8Series ISSN 1619-7127 Series E-ISSN 2627-6461
issn_series 1619-7127
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Massively Parallel Evolutionary Computation on GPGPUs影響因子(影響力)




書目名稱Massively Parallel Evolutionary Computation on GPGPUs影響因子(影響力)學科排名




書目名稱Massively Parallel Evolutionary Computation on GPGPUs網(wǎng)絡公開度




書目名稱Massively Parallel Evolutionary Computation on GPGPUs網(wǎng)絡公開度學科排名




書目名稱Massively Parallel Evolutionary Computation on GPGPUs被引頻次




書目名稱Massively Parallel Evolutionary Computation on GPGPUs被引頻次學科排名




書目名稱Massively Parallel Evolutionary Computation on GPGPUs年度引用




書目名稱Massively Parallel Evolutionary Computation on GPGPUs年度引用學科排名




書目名稱Massively Parallel Evolutionary Computation on GPGPUs讀者反饋




書目名稱Massively Parallel Evolutionary Computation on GPGPUs讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:22:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:39:08 | 只看該作者
GPU-Accelerated High-Accuracy Molecular Docking Using Guided Differential Evolution average speedup of 3.9× on a four-core CPU and 27.4× on a comparable CUDA-enabled GPU when docking 133 ligands of different sizes. Furthermore, the presented parallelisation schemes are generally applicable and can easily be adapted to other flexible docking methods.
地板
發(fā)表于 2025-3-22 06:14:22 | 只看該作者
5#
發(fā)表于 2025-3-22 11:17:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:53 | 只看該作者
7#
發(fā)表于 2025-3-22 18:06:48 | 只看該作者
An Analytical Study of Parallel GA with Independent Runs on GPUsison to CPU computations, GPU computation shows a speedup of 7.2× and 13.1× on average using a single GTX 285 GPU and two GTX 285 GPUs, respectively. The parallel independent run model is the simplest of the various parallel evolutionary computation models, and among the models it demonstrates the lower limit performance.
8#
發(fā)表于 2025-3-22 23:38:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:28 | 只看該作者
Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Unitle data (SIMD) mode of parallel computing, even though the GP populations contain different programs. A 448 node nVidia Fermi C2050 Tesla graphics card delivers 8.5 giga GPops per second. In addition to describing our implementation, we survey current GPGPU work in bioinformatics and genetic programming.
10#
發(fā)表于 2025-3-23 09:21:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵德县| 巴东县| 凉山| 昌吉市| 津市市| 汝城县| 凯里市| 弋阳县| 应城市| 平顶山市| 平南县| 北海市| 黄梅县| 勐海县| 通山县| 阿克| 普格县| 晋江市| 峨边| 民县| 长治县| 英吉沙县| 南雄市| 天祝| 太和县| 漾濞| 林西县| 隆回县| 新河县| 巨野县| 东莞市| 军事| 永嘉县| 泾阳县| 凌海市| 瑞安市| 承德市| 青浦区| 敦煌市| 玉山县| 大足县|