找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Massively Parallel Evolutionary Computation on GPGPUs; Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復(fù)制鏈接]
查看: 10265|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:55:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs
編輯Shigeyoshi Tsutsui,Pierre Collet
視頻videohttp://file.papertrans.cn/626/625368/625368.mp4
概述First book dedicated to exciting new approach.Content characterized by emphasis on solving practical problems.Valuable for researchers, practitioners, and graduate students.Includes supplementary mate
叢書(shū)名稱(chēng)Natural Computing Series
圖書(shū)封面Titlebook: Massively Parallel Evolutionary Computation on GPGPUs;  Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A
描述.Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened up this possibility for parallel EAs, and this is the first book dedicated to this exciting development..?.The three chapters of Part I are tutorials, representing a comprehensive introduction to the approach, explaining the characteristics of the hardware used, and presenting a representative project to develop a platform for automatic parallelization of evolutionary computing (EC) on GPGPUs. The 10 chapters in Part II focus on how to consider key EC approaches in the light of this advanced computational technique, in particular addressing generic local search, tabu search, genetic algorithms
出版日期Book 2013
關(guān)鍵詞Artificial chemistries; CGP; Cartesian genetic programming; Clusters; Differential evolution; Evolutionar
版次1
doihttps://doi.org/10.1007/978-3-642-37959-8
isbn_softcover978-3-662-51345-3
isbn_ebook978-3-642-37959-8Series ISSN 1619-7127 Series E-ISSN 2627-6461
issn_series 1619-7127
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs影響因子(影響力)




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs被引頻次




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs被引頻次學(xué)科排名




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs年度引用




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs年度引用學(xué)科排名




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs讀者反饋




書(shū)目名稱(chēng)Massively Parallel Evolutionary Computation on GPGPUs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:39:08 | 只看該作者
GPU-Accelerated High-Accuracy Molecular Docking Using Guided Differential Evolution average speedup of 3.9× on a four-core CPU and 27.4× on a comparable CUDA-enabled GPU when docking 133 ligands of different sizes. Furthermore, the presented parallelisation schemes are generally applicable and can easily be adapted to other flexible docking methods.
地板
發(fā)表于 2025-3-22 06:14:22 | 只看該作者
5#
發(fā)表于 2025-3-22 11:17:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:53 | 只看該作者
7#
發(fā)表于 2025-3-22 18:06:48 | 只看該作者
An Analytical Study of Parallel GA with Independent Runs on GPUsison to CPU computations, GPU computation shows a speedup of 7.2× and 13.1× on average using a single GTX 285 GPU and two GTX 285 GPUs, respectively. The parallel independent run model is the simplest of the various parallel evolutionary computation models, and among the models it demonstrates the lower limit performance.
8#
發(fā)表于 2025-3-22 23:38:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:28 | 只看該作者
Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Unitle data (SIMD) mode of parallel computing, even though the GP populations contain different programs. A 448 node nVidia Fermi C2050 Tesla graphics card delivers 8.5 giga GPops per second. In addition to describing our implementation, we survey current GPGPU work in bioinformatics and genetic programming.
10#
發(fā)表于 2025-3-23 09:21:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濉溪县| 康马县| 昌邑市| 邯郸市| 太仓市| 会宁县| 红河县| 濉溪县| 内江市| 乐山市| 平江县| 武清区| 万全县| 勃利县| 伊春市| 林芝县| 鄂托克旗| 开远市| 武陟县| 洱源县| 门头沟区| 固原市| 界首市| 绥芬河市| 会泽县| 康平县| 舞阳县| 扬中市| 新疆| 应城市| 通化县| 崇信县| 通州区| 洱源县| 福清市| 孟连| 大新县| 博兴县| 甘洛县| 建昌县| 横峰县|