找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M

[復制鏈接]
樓主: ARGOT
11#
發(fā)表于 2025-3-23 12:36:46 | 只看該作者
ally infected cells and normal allogeneic cells without prior sensitization (1). NK killing is distinct from major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) killing because both syngeneic and allogeneic targets can be lysed. NK cells are defined as lymphocytes that hav
12#
發(fā)表于 2025-3-23 15:28:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:45:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:38 | 只看該作者
Comparison of Marginal Space Learning and Full Space Learning in 2D,pare the performance of the MSL and Full Space Learning. A thorough comparison experiment on the LV detection in MRI images shows that the MSL significantly outperforms the FSL, in both speed and accuracy.
15#
發(fā)表于 2025-3-24 05:31:09 | 只看該作者
Constrained Marginal Space Learning,framework. The prior distribution of the object position is learned based on the statistics of the distance from the object center to volume border, and the test hypotheses of the orientation and scale are generated using an example-based sampling strategy from the training set. Furthermore, we empl
16#
發(fā)表于 2025-3-24 08:02:27 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:48 | 只看該作者
Optimal Mean Shape for Nonrigid Object Detection and Segmentation, population. The anisotropic similarity transformation from the optimal mean shape to each individual training shape provides the ground truth of the pose parameters learned through the Marginal Space Learning (MSL). After the alignment with the estimated object pose, the optimal mean shape provides
18#
發(fā)表于 2025-3-24 14:59:02 | 只看該作者
Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation,onents described in previous chapters into a complete segmentation system. In addition, simple and efficient methods based on mesh resampling are developed to establish mesh point correspondence, required to train a mean shape for shape initialization and build a statistical shape model for object b
19#
發(fā)表于 2025-3-24 20:05:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
嘉峪关市| 阳西县| 珠海市| 新泰市| 绍兴市| 榕江县| 新野县| 怀集县| 司法| 闽侯县| 郁南县| 丰县| 锡林浩特市| 丁青县| 南开区| 西乌| 岐山县| 库尔勒市| 达拉特旗| 双流县| 库尔勒市| 中阳县| 海丰县| 五指山市| 栖霞市| 黄陵县| 泰来县| 施秉县| 邵武市| 临泽县| 沈丘县| 灵台县| 平定县| 黔江区| 治多县| 出国| 丰都县| 文山县| 白水县| 南郑县| 镇安县|