找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M

[復制鏈接]
查看: 53156|回復: 43
樓主
發(fā)表于 2025-3-21 19:05:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Marginal Space Learning for Medical Image Analysis
副標題Efficient Detection
編輯Yefeng Zheng,Dorin Comaniciu
視頻videohttp://file.papertrans.cn/624/623875/623875.mp4
概述Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and eff
圖書封面Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection  Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M
描述.Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness..
出版日期Book 2014
關鍵詞3D medical image data; Anatomical structure detection; artificial intelligence; computed tomography; hum
版次1
doihttps://doi.org/10.1007/978-1-4939-0600-0
isbn_softcover978-1-4939-5575-6
isbn_ebook978-1-4939-0600-0
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

書目名稱Marginal Space Learning for Medical Image Analysis影響因子(影響力)




書目名稱Marginal Space Learning for Medical Image Analysis影響因子(影響力)學科排名




書目名稱Marginal Space Learning for Medical Image Analysis網絡公開度




書目名稱Marginal Space Learning for Medical Image Analysis網絡公開度學科排名




書目名稱Marginal Space Learning for Medical Image Analysis被引頻次




書目名稱Marginal Space Learning for Medical Image Analysis被引頻次學科排名




書目名稱Marginal Space Learning for Medical Image Analysis年度引用




書目名稱Marginal Space Learning for Medical Image Analysis年度引用學科排名




書目名稱Marginal Space Learning for Medical Image Analysis讀者反饋




書目名稱Marginal Space Learning for Medical Image Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:45:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:10:13 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:06:44 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:18 | 只看該作者
7#
發(fā)表于 2025-3-22 18:03:26 | 只看該作者
Yefeng Zheng,Dorin Comaniciuecific leading to the prevailing notion that most of the T cell expansion represents cytokine-mediated bystander activation and/or cross reactive stimulation of non specific cells. To re-examine this issue we quantitated antigen specific CD8 T cells during acute LCMV infection of mice using three se
8#
發(fā)表于 2025-3-22 23:21:38 | 只看該作者
Yefeng Zheng,Dorin Comaniciu them off. In addition, fine-tuning can be achieved through signals that amplify or downmodulate responses. The complexity in signal transduction pathways that regulate these responses is daunting. Even terminal responses, such as degranulation by effector cells in the immune system, do not follow a
9#
發(fā)表于 2025-3-23 01:35:04 | 只看該作者
10#
發(fā)表于 2025-3-23 06:29:53 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 12:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
郑州市| 平果县| 泉州市| 铁岭县| 峨眉山市| 贵溪市| 建德市| 荔浦县| 前郭尔| 噶尔县| 布拖县| 砚山县| 保山市| 武安市| 朔州市| 娄烦县| 综艺| 改则县| 淳安县| 岳阳县| 康平县| 富川| 嵩明县| 青田县| 鹤庆县| 拜城县| 上高县| 赤水市| 邯郸县| 大同市| 隆尧县| 宁陕县| 怀来县| 大同县| 阜平县| 巴青县| 花垣县| 博罗县| 沾益县| 崇州市| 南宁市|