找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M

[復(fù)制鏈接]
樓主: ARGOT
11#
發(fā)表于 2025-3-23 12:36:46 | 只看該作者
ally infected cells and normal allogeneic cells without prior sensitization (1). NK killing is distinct from major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) killing because both syngeneic and allogeneic targets can be lysed. NK cells are defined as lymphocytes that hav
12#
發(fā)表于 2025-3-23 15:28:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:45:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:38 | 只看該作者
Comparison of Marginal Space Learning and Full Space Learning in 2D,pare the performance of the MSL and Full Space Learning. A thorough comparison experiment on the LV detection in MRI images shows that the MSL significantly outperforms the FSL, in both speed and accuracy.
15#
發(fā)表于 2025-3-24 05:31:09 | 只看該作者
Constrained Marginal Space Learning,framework. The prior distribution of the object position is learned based on the statistics of the distance from the object center to volume border, and the test hypotheses of the orientation and scale are generated using an example-based sampling strategy from the training set. Furthermore, we empl
16#
發(fā)表于 2025-3-24 08:02:27 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:48 | 只看該作者
Optimal Mean Shape for Nonrigid Object Detection and Segmentation, population. The anisotropic similarity transformation from the optimal mean shape to each individual training shape provides the ground truth of the pose parameters learned through the Marginal Space Learning (MSL). After the alignment with the estimated object pose, the optimal mean shape provides
18#
發(fā)表于 2025-3-24 14:59:02 | 只看該作者
Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation,onents described in previous chapters into a complete segmentation system. In addition, simple and efficient methods based on mesh resampling are developed to establish mesh point correspondence, required to train a mean shape for shape initialization and build a statistical shape model for object b
19#
發(fā)表于 2025-3-24 20:05:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 米脂县| 翼城县| 轮台县| 延安市| 淮滨县| 天峻县| 阜新市| 灵石县| 隆化县| 贺兰县| 丰都县| 郧西县| 绍兴县| 正阳县| 宁波市| 叙永县| 禹城市| 张北县| 师宗县| 枞阳县| 阳信县| 冀州市| 进贤县| 怀安县| 平湖市| 三门峡市| 江口县| 金湖县| 白银市| 岱山县| 栖霞市| 卓尼县| 邢台县| 崇仁县| 石台县| 文安县| 册亨县| 武平县| 桐乡市| 宜川县|