找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds and Lie Groups; Papers in Honor of Y Jun-ichi Hano,A. Morimoto,H. Ozeki Book 1981 Springer Science+Business Media New York 1981 a

[復制鏈接]
樓主: 欺侮
51#
發(fā)表于 2025-3-30 10:07:35 | 只看該作者
52#
發(fā)表于 2025-3-30 14:30:31 | 只看該作者
53#
發(fā)表于 2025-3-30 17:52:36 | 只看該作者
978-1-4612-5989-3Springer Science+Business Media New York 1981
54#
發(fā)表于 2025-3-30 21:55:56 | 只看該作者
Manifolds and Lie Groups978-1-4612-5987-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
55#
發(fā)表于 2025-3-31 01:42:44 | 只看該作者
0743-1643 Overview: 978-1-4612-5989-3978-1-4612-5987-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
56#
發(fā)表于 2025-3-31 07:44:34 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/m/image/623390.jpg
57#
發(fā)表于 2025-3-31 12:47:16 | 只看該作者
,On Some Generalization of B. Kostant’s Partition Function,me of these properties are shown to be valid also for some generalized versions of Kostant’s partition function (see Theorem 1 below). As an application of these properties we give (Theorem 4) an explicit formula for the multiplicity of the zero-weight in a given irreducible representation of the simple Lie algebra of type (G.).
58#
發(fā)表于 2025-3-31 15:25:17 | 只看該作者
59#
發(fā)表于 2025-3-31 18:58:16 | 只看該作者
On Poisson Brackets of Semi-Invariants, power series ., and we shall give natural expllicit expressions of Poisson brackets. In formal calculus of variations Poisson brackets are defined on the quotient module ., in our case, however, they are defined on ring of semi-invaiants ..
60#
發(fā)表于 2025-3-31 23:31:54 | 只看該作者
Some Stabilities of Group Automorphisms,f φ iff d(φ(x.),x.) ≤ δ for every i∈Z, where δ>0 is a constant (cf. [2]). Given ε>0, a δ-pseudo-orbit {x.} is called to be ε-traced by a point y∈M iff d(φ. (y),x.)≤ε for every i≤Z. We shall call φ stochastically stable, iff for any ε>0 there exists δ>0 such that every δ-pseudo-orbit of φ can be ε-traced by some point y∈M.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沙坪坝区| 桐城市| 万盛区| 五莲县| 郯城县| 彰武县| 清水河县| 罗平县| 太湖县| 东兰县| 曲周县| 绥宁县| 博客| 辽中县| 竹溪县| 青铜峡市| 石泉县| 牡丹江市| 阳谷县| 玉田县| 共和县| 甘肃省| 屏东市| 那曲县| 永仁县| 独山县| 九龙坡区| 新昌县| 五台县| 保康县| 西藏| 堆龙德庆县| 法库县| 晴隆县| 高州市| 龙泉市| 米脂县| 利津县| 新和县| 兴山县| 错那县|