找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds and Lie Groups; Papers in Honor of Y Jun-ichi Hano,A. Morimoto,H. Ozeki Book 1981 Springer Science+Business Media New York 1981 a

[復(fù)制鏈接]
查看: 35074|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:37:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Manifolds and Lie Groups
副標(biāo)題Papers in Honor of Y
編輯Jun-ichi Hano,A. Morimoto,H. Ozeki
視頻videohttp://file.papertrans.cn/624/623390/623390.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Manifolds and Lie Groups; Papers in Honor of Y Jun-ichi Hano,A. Morimoto,H. Ozeki Book 1981 Springer Science+Business Media New York 1981 a
出版日期Book 1981
關(guān)鍵詞algebra; cohomology; cohomology group; homology; manifold
版次1
doihttps://doi.org/10.1007/978-1-4612-5987-9
isbn_softcover978-1-4612-5989-3
isbn_ebook978-1-4612-5987-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1981
The information of publication is updating

書目名稱Manifolds and Lie Groups影響因子(影響力)




書目名稱Manifolds and Lie Groups影響因子(影響力)學(xué)科排名




書目名稱Manifolds and Lie Groups網(wǎng)絡(luò)公開度




書目名稱Manifolds and Lie Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Manifolds and Lie Groups被引頻次




書目名稱Manifolds and Lie Groups被引頻次學(xué)科排名




書目名稱Manifolds and Lie Groups年度引用




書目名稱Manifolds and Lie Groups年度引用學(xué)科排名




書目名稱Manifolds and Lie Groups讀者反饋




書目名稱Manifolds and Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:12 | 只看該作者
Vector Fields and Cohomology of G/B,omorphic vector field V on a projective manifold X, is it true that X has no nontrivial holomorphic p-forms if p > dim. zero (V)? Alan Howard answered this question affirmatively in [H] and later, D. Lieberman and I discovered other relationships between zeros of holomorphic vector fields and topolo
地板
發(fā)表于 2025-3-22 07:33:03 | 只看該作者
5#
發(fā)表于 2025-3-22 08:58:59 | 只看該作者
6#
發(fā)表于 2025-3-22 13:14:59 | 只看該作者
On Lie Algebras Generated by Two Differential Operators,ivation in K[x] defined by D.x.. = δ... for 1 ≦ i, j ≦ r; then the multiplications by x.,...,x. in K[x] and D..,...,D. generate a subalgebra A of the associative K-algebra of all K-linear transformations in K[x]. An element X of A can be written uniquely in the form . with a .in K; it is a linear di
7#
發(fā)表于 2025-3-22 18:30:08 | 只看該作者
Conformally-Flatness and Static Space-Time, where . and . are the natural projections, g a Riemannian metric on M, and f a positive function on M. We consider Einstein’s equation on (.) with perfect fluid as a matter field, i.e., . where n is a l-form with ., whose associated vector field represents the flux of the fluid, and μ and p are fun
8#
發(fā)表于 2025-3-22 21:45:01 | 只看該作者
On Poisson Brackets of Semi-Invariants, power series ., and we shall give natural expllicit expressions of Poisson brackets. In formal calculus of variations Poisson brackets are defined on the quotient module ., in our case, however, they are defined on ring of semi-invaiants ..
9#
發(fā)表于 2025-3-23 03:25:29 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:26 | 只看該作者
A Note on Cohomology Groups of Holomorphic Line Bundles over a Complex Torus,le over E. In this note, we shall show that the q-th cohomology group H.(E,.) (q ≧ 0) of E with coefficients in the sheaf . of germs of holomorphic sections of F can be completely determined by applying harmonic theory. The results have been obtained by Mumford [3] and Kempf [1] by an algebraico-geo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍林郭勒市| 北安市| 桓台县| 房产| 西乡县| 泰安市| 祁连县| 越西县| 静乐县| 内乡县| 常州市| 阳春市| 苍南县| 东乡县| 云南省| 商南县| 泾川县| 北流市| 崇左市| 永定县| 兴和县| 罗平县| 常州市| 太保市| 林州市| 阳春市| 潞西市| 东丰县| 项城市| 金塔县| 万全县| 崇阳县| 泸定县| 永登县| 察哈| 赞皇县| 阿拉善右旗| 原阳县| 永顺县| 城固县| 宜兰县|