找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation: From Research to Real Users; 5th Conference of th Stephen D. Richardson Conference proceedings 2002 Springer-Verlag Be

[復(fù)制鏈接]
樓主: tricuspid-valve
31#
發(fā)表于 2025-3-26 23:58:03 | 只看該作者
Handling Translation Divergences: Combining Statistical and Symbolic Techniques in Generation-Heavy ion divergence problem is usually reserved for Transfer and Interlingual MT because it requires a large combination of complex lexical and structural mappings. A major requirement of these approaches is the accessibility of large amounts of explicit symmetric knowledge for both source and target lan
32#
發(fā)表于 2025-3-27 01:57:00 | 只看該作者
33#
發(fā)表于 2025-3-27 05:58:34 | 只看該作者
Merging Example-Based and Statistical Machine Translation: An Experimentbeing able to say that machine translation fully meets the needs of real-life users. In a previous study [.], we have shown how a SMT engine could benefit from terminological resources, especially when translating texts very different from those used to train the system. In the present paper, we dis
34#
發(fā)表于 2025-3-27 09:44:51 | 只看該作者
35#
發(fā)表于 2025-3-27 14:48:12 | 只看該作者
Better Contextual Translation Using Machine Learningf between contextual specificity and general applicability of the mappings, which typically results in conflicting mappings without distinguishing context. We present a machine-learning approach to choosing between such mappings, using classifiers that, in effect, selectively expand the context for
36#
發(fā)表于 2025-3-27 21:16:43 | 只看該作者
Fast and Accurate Sentence Alignment of Bilingual Corporaither on sentence length or word correspondences. Sentence-length-based methods are relatively fast and fairly accurate. Word-correspondence-based methods are generally more accurate but much slower, and usually depend on cognates or a bilingual lexicon. Our method adapts and combines these approach
37#
發(fā)表于 2025-3-28 00:50:24 | 只看該作者
Deriving Semantic Knowledge from Descriptive Texts Using an MT SystemThe KANT system [.,.] was used to analyze input paragraphs, producing sentence-level interlingua representations. The interlinguas were merged to construct a paragraph-level representation, which was used to create a semantic network in Conceptual Graph (CG) [.] format. The interlinguas are also tra
38#
發(fā)表于 2025-3-28 04:45:34 | 只看該作者
39#
發(fā)表于 2025-3-28 09:41:59 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双桥区| 岑溪市| 云霄县| 芒康县| 若尔盖县| 潢川县| 宝山区| 贵定县| 新野县| 连南| 北碚区| 云南省| 罗江县| 屏南县| 兰考县| 鲜城| 佛坪县| 临江市| 松溪县| 宿松县| 平原县| 四会市| 成都市| 四川省| 辰溪县| 华容县| 中山市| 兴安盟| 原平市| 抚宁县| 本溪| 永福县| 鹿泉市| 泾源县| 凤凰县| 高阳县| 江门市| 和田市| 扬中市| 华坪县| 顺昌县|