找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Social Networks; Embedding Nodes, Edg Manasvi Aggarwal,M.N. Murty Book 2021 The Author(s), under exclusive license to S

[復(fù)制鏈接]
查看: 48123|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:22:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Social Networks
副標(biāo)題Embedding Nodes, Edg
編輯Manasvi Aggarwal,M.N. Murty
視頻videohttp://file.papertrans.cn/621/620702/620702.mp4
概述Highlights the understanding of complex systems in different domains including health, education, agriculture, and transportation.Combines both conventional machine learning (ML) and deep learning (DL
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Machine Learning in Social Networks; Embedding Nodes, Edg Manasvi Aggarwal,M.N. Murty Book 2021 The Author(s), under exclusive license to S
描述.This book deals with?network?representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by?modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and?protein–protein?interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases)?and?community detection (grouping users of a social network according to their interests)?by leveraging the latent information of networks. An active and important area ofcurrent interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping
出版日期Book 2021
關(guān)鍵詞Network embedding; Deep Learning (DL); Neural Networks; Network representation learning; Embedded graphs
版次1
doihttps://doi.org/10.1007/978-981-33-4022-0
isbn_softcover978-981-33-4021-3
isbn_ebook978-981-33-4022-0Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Machine Learning in Social Networks影響因子(影響力)




書目名稱Machine Learning in Social Networks影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Social Networks網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Social Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Social Networks被引頻次




書目名稱Machine Learning in Social Networks被引頻次學(xué)科排名




書目名稱Machine Learning in Social Networks年度引用




書目名稱Machine Learning in Social Networks年度引用學(xué)科排名




書目名稱Machine Learning in Social Networks讀者反饋




書目名稱Machine Learning in Social Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:42:02 | 只看該作者
https://doi.org/10.1007/978-981-33-4022-0Network embedding; Deep Learning (DL); Neural Networks; Network representation learning; Embedded graphs
地板
發(fā)表于 2025-3-22 05:02:35 | 只看該作者
Embedding Graphs,There are several applications where an embedding or a low-dimensional representation of the entire graph is required. This chapter deals with such representations which are called .. We consider various state-of-the-art graph pooling techniques that are important in this context. We also consider . tasks including ., and
5#
發(fā)表于 2025-3-22 09:45:25 | 只看該作者
Conclusions,this book we have examined .,?and their analysis. Specifically, we considered the following aspects.
6#
發(fā)表于 2025-3-22 13:44:28 | 只看該作者
978-981-33-4021-3The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
7#
發(fā)表于 2025-3-22 17:04:28 | 只看該作者
Machine Learning in Social Networks978-981-33-4022-0Series ISSN 2191-530X Series E-ISSN 2191-5318
8#
發(fā)表于 2025-3-23 01:11:18 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:35 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武穴市| 元江| 手机| 商河县| 本溪市| 关岭| 井陉县| 拉萨市| 镇平县| 延吉市| 吉林市| 中超| 铁岭县| 双柏县| 齐齐哈尔市| 漳平市| 蓬安县| 阿拉善左旗| 黔江区| 新宾| 康平县| 武强县| 响水县| 涡阳县| 民权县| 蕉岭县| 丹凤县| 太白县| 洛隆县| 永善县| 青神县| 泸溪县| 定西市| 旬邑县| 涟源市| 门源| 黑水县| 开化县| 鸡泽县| 东莞市| 永清县|