找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Social Networks; Embedding Nodes, Edg Manasvi Aggarwal,M.N. Murty Book 2021 The Author(s), under exclusive license to S

[復(fù)制鏈接]
查看: 48119|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:22:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning in Social Networks
副標(biāo)題Embedding Nodes, Edg
編輯Manasvi Aggarwal,M.N. Murty
視頻videohttp://file.papertrans.cn/621/620702/620702.mp4
概述Highlights the understanding of complex systems in different domains including health, education, agriculture, and transportation.Combines both conventional machine learning (ML) and deep learning (DL
叢書(shū)名稱SpringerBriefs in Applied Sciences and Technology
圖書(shū)封面Titlebook: Machine Learning in Social Networks; Embedding Nodes, Edg Manasvi Aggarwal,M.N. Murty Book 2021 The Author(s), under exclusive license to S
描述.This book deals with?network?representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by?modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and?protein–protein?interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases)?and?community detection (grouping users of a social network according to their interests)?by leveraging the latent information of networks. An active and important area ofcurrent interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping
出版日期Book 2021
關(guān)鍵詞Network embedding; Deep Learning (DL); Neural Networks; Network representation learning; Embedded graphs
版次1
doihttps://doi.org/10.1007/978-981-33-4022-0
isbn_softcover978-981-33-4021-3
isbn_ebook978-981-33-4022-0Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書(shū)目名稱Machine Learning in Social Networks影響因子(影響力)




書(shū)目名稱Machine Learning in Social Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning in Social Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning in Social Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning in Social Networks被引頻次




書(shū)目名稱Machine Learning in Social Networks被引頻次學(xué)科排名




書(shū)目名稱Machine Learning in Social Networks年度引用




書(shū)目名稱Machine Learning in Social Networks年度引用學(xué)科排名




書(shū)目名稱Machine Learning in Social Networks讀者反饋




書(shū)目名稱Machine Learning in Social Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:42:02 | 只看該作者
https://doi.org/10.1007/978-981-33-4022-0Network embedding; Deep Learning (DL); Neural Networks; Network representation learning; Embedded graphs
地板
發(fā)表于 2025-3-22 05:02:35 | 只看該作者
Embedding Graphs,There are several applications where an embedding or a low-dimensional representation of the entire graph is required. This chapter deals with such representations which are called .. We consider various state-of-the-art graph pooling techniques that are important in this context. We also consider . tasks including ., and
5#
發(fā)表于 2025-3-22 09:45:25 | 只看該作者
Conclusions,this book we have examined .,?and their analysis. Specifically, we considered the following aspects.
6#
發(fā)表于 2025-3-22 13:44:28 | 只看該作者
978-981-33-4021-3The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
7#
發(fā)表于 2025-3-22 17:04:28 | 只看該作者
Machine Learning in Social Networks978-981-33-4022-0Series ISSN 2191-530X Series E-ISSN 2191-5318
8#
發(fā)表于 2025-3-23 01:11:18 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:35 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盈江县| 托里县| 秀山| 沙湾县| 姚安县| 乌鲁木齐县| 屏南县| 仲巴县| 宣武区| 南溪县| 凤山市| 沅陵县| 偃师市| 杭锦旗| 重庆市| 富锦市| 靖远县| 茌平县| 栾城县| 丁青县| 夏邑县| 宜兰县| 阿拉善盟| 黎平县| 通州区| 句容市| 广东省| 潼关县| 天镇县| 文成县| 云安县| 尼玛县| 财经| 玛纳斯县| 方山县| 东城区| 蒲城县| 岑溪市| 农安县| 麻阳| 镇安县|