找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medicine - a Complete Overview; Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P

[復(fù)制鏈接]
查看: 15544|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:51:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Medicine - a Complete Overview
編輯Ton J. Cleophas,Aeilko H. Zwinderman
視頻videohttp://file.papertrans.cn/621/620696/620696.mp4
概述First publication of a complete overview of machine learning methodologies for the medical and health sector.Written as a training companion, and as a must-read, not only for physicians and students,
圖書封面Titlebook: Machine Learning in Medicine - a Complete Overview;  Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P
描述.The current book is the first publication of a complete overview of machine learning methodologies for the medical and health sector. It was written as a training companion and as a must-read, not only for physicians and students, but also for any one involved in the process and progress of health and health care. In eighty chapters eighty different machine learning methodologies are reviewed, in combination with data examples for self-assessment. Each chapter can be studied without the need to consult other chapters..The amount of data stored in the world‘s databases doubles every 20 months, and clinicians, familiar with traditional statistical methods, are at a loss to analyze them. Traditional methods have, indeed, difficulty to identify outliers in large datasets, and to find patterns in big data and data with multiple exposure / outcome variables. In addition, analysis-rules for surveys and questionnaires, which are currently common methods of data collection, are, essentially, missing. Fortunately, the new discipline, machine learning, is able to cover all of these limitations..So far medical professionals have been rather reluctant to use machine learning. Also, in the fiel
出版日期Textbook 20151st edition
關(guān)鍵詞Coputer science; Data mining; Machine learning; SPSS statistical software; various data mining software
版次1
doihttps://doi.org/10.1007/978-3-319-15195-3
isbn_softcover978-3-319-38638-6
isbn_ebook978-3-319-15195-3
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Machine Learning in Medicine - a Complete Overview影響因子(影響力)




書目名稱Machine Learning in Medicine - a Complete Overview影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Medicine - a Complete Overview網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Medicine - a Complete Overview網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Medicine - a Complete Overview被引頻次




書目名稱Machine Learning in Medicine - a Complete Overview被引頻次學(xué)科排名




書目名稱Machine Learning in Medicine - a Complete Overview年度引用




書目名稱Machine Learning in Medicine - a Complete Overview年度引用學(xué)科排名




書目名稱Machine Learning in Medicine - a Complete Overview讀者反饋




書目名稱Machine Learning in Medicine - a Complete Overview讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:56 | 只看該作者
978-3-319-38638-6Springer International Publishing Switzerland 2015
地板
發(fā)表于 2025-3-22 05:20:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:15 | 只看該作者
Hierarchical Clustering and K-Means Clustering to Identify Subgroups in Surveys (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining.
7#
發(fā)表于 2025-3-22 20:48:00 | 只看該作者
Density-Based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining. Density-based clustering is used.
8#
發(fā)表于 2025-3-23 00:48:39 | 只看該作者
Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future PatiTo assess whether two step clustering of survey data can be trained to identify subgroups and subgroup membership.
9#
發(fā)表于 2025-3-23 04:49:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:01:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 勃利县| 独山县| 镇平县| 景东| 义马市| 宜城市| 界首市| 肥东县| 美姑县| 那曲县| 宜宾市| 孟津县| 丰台区| 黄冈市| 山丹县| 金溪县| 漾濞| 雅江县| 栾川县| 宜章县| 松桃| 招远市| 德令哈市| 洛浦县| 明光市| 梁河县| 盐城市| 会理县| 沧源| 贺兰县| 五大连池市| 沛县| 招远市| 永城市| 云安县| 仁寿县| 谷城县| 昆山市| 泰来县| 海丰县|