找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medicine - a Complete Overview; Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P

[復(fù)制鏈接]
查看: 15539|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:51:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning in Medicine - a Complete Overview
編輯Ton J. Cleophas,Aeilko H. Zwinderman
視頻videohttp://file.papertrans.cn/621/620696/620696.mp4
概述First publication of a complete overview of machine learning methodologies for the medical and health sector.Written as a training companion, and as a must-read, not only for physicians and students,
圖書(shū)封面Titlebook: Machine Learning in Medicine - a Complete Overview;  Ton J. Cleophas,Aeilko H. Zwinderman Textbook 20151st edition Springer International P
描述.The current book is the first publication of a complete overview of machine learning methodologies for the medical and health sector. It was written as a training companion and as a must-read, not only for physicians and students, but also for any one involved in the process and progress of health and health care. In eighty chapters eighty different machine learning methodologies are reviewed, in combination with data examples for self-assessment. Each chapter can be studied without the need to consult other chapters..The amount of data stored in the world‘s databases doubles every 20 months, and clinicians, familiar with traditional statistical methods, are at a loss to analyze them. Traditional methods have, indeed, difficulty to identify outliers in large datasets, and to find patterns in big data and data with multiple exposure / outcome variables. In addition, analysis-rules for surveys and questionnaires, which are currently common methods of data collection, are, essentially, missing. Fortunately, the new discipline, machine learning, is able to cover all of these limitations..So far medical professionals have been rather reluctant to use machine learning. Also, in the fiel
出版日期Textbook 20151st edition
關(guān)鍵詞Coputer science; Data mining; Machine learning; SPSS statistical software; various data mining software
版次1
doihttps://doi.org/10.1007/978-3-319-15195-3
isbn_softcover978-3-319-38638-6
isbn_ebook978-3-319-15195-3
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書(shū)目名稱Machine Learning in Medicine - a Complete Overview影響因子(影響力)




書(shū)目名稱Machine Learning in Medicine - a Complete Overview影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning in Medicine - a Complete Overview網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning in Medicine - a Complete Overview網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning in Medicine - a Complete Overview被引頻次




書(shū)目名稱Machine Learning in Medicine - a Complete Overview被引頻次學(xué)科排名




書(shū)目名稱Machine Learning in Medicine - a Complete Overview年度引用




書(shū)目名稱Machine Learning in Medicine - a Complete Overview年度引用學(xué)科排名




書(shū)目名稱Machine Learning in Medicine - a Complete Overview讀者反饋




書(shū)目名稱Machine Learning in Medicine - a Complete Overview讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:56 | 只看該作者
978-3-319-38638-6Springer International Publishing Switzerland 2015
地板
發(fā)表于 2025-3-22 05:20:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:15 | 只看該作者
Hierarchical Clustering and K-Means Clustering to Identify Subgroups in Surveys (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining.
7#
發(fā)表于 2025-3-22 20:48:00 | 只看該作者
Density-Based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients)Clusters are subgroups in a survey estimated by the distances between the values needed to connect the patients, otherwise called cases. It is an important methodology in explorative data mining. Density-based clustering is used.
8#
發(fā)表于 2025-3-23 00:48:39 | 只看該作者
Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future PatiTo assess whether two step clustering of survey data can be trained to identify subgroups and subgroup membership.
9#
發(fā)表于 2025-3-23 04:49:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:01:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
留坝县| 铜梁县| 长春市| 丹东市| 吉木萨尔县| 桂阳县| 平利县| 封丘县| 郸城县| 科技| 女性| 山阳县| 大埔县| 白玉县| 杭锦旗| 莱州市| 获嘉县| 满洲里市| 盐边县| 盐津县| 嵊泗县| 乌什县| 凤城市| 凤翔县| 晋州市| 孙吴县| 云南省| 昭苏县| 长治县| 丽江市| 西乌| 奉节县| 伽师县| 田阳县| 扎鲁特旗| 乌兰察布市| 海阳市| 酉阳| 南陵县| 西宁市| 日喀则市|