找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 10th International W Heung-Il Suk,Mingxia Liu,Chunfeng Lian Conference proceedings 2019 Springer Natur

[復(fù)制鏈接]
樓主: memoir
31#
發(fā)表于 2025-3-26 21:04:35 | 只看該作者
Residual Attention Generative Adversarial Networks for Nuclei Detection on Routine Colon Cancer Hisms are based on the assumption that the nuclei center should have larger responses than their surroundings in the probability map of the pathological image, which in turn transforms the detection or localization problem into finding the local maxima on the probability map. However, all the existing
32#
發(fā)表于 2025-3-27 04:48:21 | 只看該作者
Semi-supervised Multi-task Learning with Chest X-Ray Images,ntrast, generative modeling—i.e., learning data generation and classification—facilitates semi-supervised training with limited labeled data. Moreover, generative modeling can be advantageous in accomplishing multiple objectives for better generalization. We propose a novel multi-task learning model
33#
發(fā)表于 2025-3-27 06:12:37 | 只看該作者
34#
發(fā)表于 2025-3-27 09:46:43 | 只看該作者
Brain MR Image Segmentation in Small Dataset with Adversarial Defense and Task Reorganization,pixel-level segmentation task. In experiments we validate our method by segmenting gray matter, white matter, and several major regions on a challenge dataset. The proposed method with only seven subjects for training can achieve 84.46% of Dice score in the onsite test set.
35#
發(fā)表于 2025-3-27 17:02:12 | 只看該作者
36#
發(fā)表于 2025-3-27 18:45:13 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:09 | 只看該作者
,Children’s Neuroblastoma Segmentation Using Morphological Features,lect 248 CT scans from distinct patients with manually-annotated labels to establish a dataset for NB segmentation. Our method is evaluated on this dataset as well as the public Brats2018, and experimental results shows that the morphological constraints can improve the performance of medical image
38#
發(fā)表于 2025-3-28 02:11:07 | 只看該作者
GFD Faster R-CNN: Gabor Fractal DenseNet Faster R-CNN for Automatic Detection of Esophageal Abnormascopic image and the generated GF image separately; the DenseNet provides a reduction in the trained parameters while supporting the network accuracy and enables a maximum flow of information. Features extracted from the GF and endoscopic images are fused through bilinear fusion before ROI pooling s
39#
發(fā)表于 2025-3-28 09:31:39 | 只看該作者
40#
發(fā)表于 2025-3-28 12:06:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉荫县| 昌都县| 诸暨市| 涪陵区| 金沙县| 茶陵县| 富宁县| 扬州市| 都安| 织金县| 铜梁县| 盘锦市| 运城市| 蓝山县| 遵化市| 武宣县| 伊通| 通化县| 平乐县| 阿拉尔市| 海南省| 莎车县| 抚顺县| 乐山市| 南投市| 朝阳区| 天门市| 宜宾县| 延川县| 青铜峡市| 兴海县| 静海县| 读书| 育儿| 陇川县| 沙田区| SHOW| 横山县| 阜新| 堆龙德庆县| 固阳县|