找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 10th International W Heung-Il Suk,Mingxia Liu,Chunfeng Lian Conference proceedings 2019 Springer Natur

[復(fù)制鏈接]
查看: 25218|回復(fù): 67
樓主
發(fā)表于 2025-3-21 16:44:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Medical Imaging
副標(biāo)題10th International W
編輯Heung-Il Suk,Mingxia Liu,Chunfeng Lian
視頻videohttp://file.papertrans.cn/621/620686/620686.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning in Medical Imaging; 10th International W Heung-Il Suk,Mingxia Liu,Chunfeng Lian Conference proceedings 2019 Springer Natur
描述This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019.?.The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions.?.They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.?.
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; automatic segmentations; ct image; image analysis; image reconstruction; image r
版次1
doihttps://doi.org/10.1007/978-3-030-32692-0
isbn_softcover978-3-030-32691-3
isbn_ebook978-3-030-32692-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Machine Learning in Medical Imaging影響因子(影響力)




書目名稱Machine Learning in Medical Imaging影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Medical Imaging被引頻次




書目名稱Machine Learning in Medical Imaging被引頻次學(xué)科排名




書目名稱Machine Learning in Medical Imaging年度引用




書目名稱Machine Learning in Medical Imaging年度引用學(xué)科排名




書目名稱Machine Learning in Medical Imaging讀者反饋




書目名稱Machine Learning in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:48:48 | 只看該作者
Conference proceedings 2019ICCAI 2019, in Shenzhen, China, in October 2019.?.The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions.?.They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt w
板凳
發(fā)表于 2025-3-22 01:34:50 | 只看該作者
Conference proceedings 2019ng, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.?.
地板
發(fā)表于 2025-3-22 08:22:46 | 只看該作者
5#
發(fā)表于 2025-3-22 09:19:06 | 只看該作者
6#
發(fā)表于 2025-3-22 13:42:57 | 只看該作者
WSI-Net: Branch-Based and Hierarchy-Aware Network for Segmentation and Classification of Breast Histhe pathology hierarchical relationships between pixels in each patch. By aggregating patch segmentation results from WSI-Net, we generate a segmentation map for the WSI and extract its morphological features for WSI-level classification. Experimental results show that our WSI-Net can be ., . and . on our benchmark dataset.
7#
發(fā)表于 2025-3-22 20:07:15 | 只看該作者
8#
發(fā)表于 2025-3-22 21:16:25 | 只看該作者
MSAFusionNet: Multiple Subspace Attention Based Deep Multi-modal Fusion Network,ial multi-modal input images, and (3) a densely-dilated U-Net as the encoder-decoder backbone for image segmentation. Experiments on ISLES 2018 data set have shown that MSAFusionNet achieves the state-of-the-art segmentation accuracy.
9#
發(fā)表于 2025-3-23 01:21:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:18:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾源县| 米易县| 台山市| 潜江市| 南丹县| 溆浦县| 绍兴县| 太康县| 云安县| 福安市| 通州区| 新竹县| 西安市| 灵宝市| 新平| 诸暨市| 东兴市| 修武县| 大洼县| 元谋县| 万年县| 札达县| 太仆寺旗| 宣威市| 东丰县| 南部县| 青浦区| 水富县| 灯塔市| 乐安县| 资兴市| 五常市| 仙居县| 洪雅县| 赤壁市| 漳平市| 大冶市| 固始县| 沾化县| 邹平县| 崇义县|