找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Vision-Based Motion Analysis; Theory and Technique Liang Wang,Guoying Zhao,Matti Pietik?inen Book 2011 Springer-Verlag

[復(fù)制鏈接]
樓主: BULB
41#
發(fā)表于 2025-3-28 16:13:50 | 只看該作者
https://doi.org/10.1007/978-0-85729-057-1Computer Vision; Graphical Models; Kernel Machines; Machine Learning; Manifold Learning; Motion Analysis;
42#
發(fā)表于 2025-3-28 21:39:08 | 只看該作者
Practical Algorithms of Spectral Clustering: Toward Large-Scale Vision-Based Motion Analysisdata on separate nonlinear manifolds. Reducing its computational expense without critical loss of accuracy contributes to its practical use especially in vision-based applications. The present algorithms exploit random projection and subsampling techniques for reducing dimensionality and the cost fo
43#
發(fā)表于 2025-3-28 23:27:07 | 只看該作者
Riemannian Manifold Clustering and?Dimensionality Reduction for?Vision-Based?Analysisers based upon image properties such as intensity, color, texture, or motion. Most existing segmentation algorithms proceed by associating a feature vector to each pixel in the image or video and then segmenting the data by clustering these feature vectors. This process can be phrased as a manifold
44#
發(fā)表于 2025-3-29 06:08:14 | 只看該作者
Manifold Learning for Multi-dimensional Auto-regressive Dynamical Modelsl metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized automorphism. The problem of classifying motions, encoded as dynamical models of a certain class, can then be posed on the learnt manifold. In particular, we consider the class of
45#
發(fā)表于 2025-3-29 07:17:49 | 只看該作者
Mixed-State Markov Models in Image Motion Analysisprobability mass at zero velocity, while the rest of the motion values may be appropriately modeled with a continuous distribution. This suggests the introduction of mixed-state random variables that have probability mass concentrated in discrete states, while they have a probability density over a
46#
發(fā)表于 2025-3-29 14:42:31 | 只看該作者
47#
發(fā)表于 2025-3-29 18:23:45 | 只看該作者
Discriminative Multiple Target Trackinggets. The single appearance model effectively captures the discriminative visual information among the different visual targets as well as the background. The appearance modeling and the tracking of the multiple targets are all cast in a discriminative metric learning framework. We manifest that an
48#
發(fā)表于 2025-3-29 21:47:48 | 只看該作者
49#
發(fā)表于 2025-3-30 03:54:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 会东县| 宜君县| 泗阳县| 长乐市| 乡城县| 清徐县| 龙口市| 赤壁市| 莎车县| 尉氏县| 万盛区| 和田县| 恭城| 嘉义市| 肥乡县| 三江| 会宁县| 墨玉县| 崇州市| 南乐县| 安溪县| 新巴尔虎左旗| 西乡县| 安陆市| 商都县| 涿州市| 中江县| 沙河市| 锡林郭勒盟| 宁波市| 海丰县| 朔州市| 濉溪县| 天峨县| 河东区| 临猗县| 旌德县| 沁阳市| 岑巩县| 平利县|