找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Vision-Based Motion Analysis; Theory and Technique Liang Wang,Guoying Zhao,Matti Pietik?inen Book 2011 Springer-Verlag

[復(fù)制鏈接]
查看: 43491|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:42:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Vision-Based Motion Analysis
副標(biāo)題Theory and Technique
編輯Liang Wang,Guoying Zhao,Matti Pietik?inen
視頻videohttp://file.papertrans.cn/621/620655/620655.mp4
概述Provides a comprehensive and accessible review of vision-based motion analysis.Highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine le
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Machine Learning for Vision-Based Motion Analysis; Theory and Technique Liang Wang,Guoying Zhao,Matti Pietik?inen Book 2011 Springer-Verlag
描述.Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition..Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions..Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis,
出版日期Book 2011
關(guān)鍵詞Computer Vision; Graphical Models; Kernel Machines; Machine Learning; Manifold Learning; Motion Analysis;
版次1
doihttps://doi.org/10.1007/978-0-85729-057-1
isbn_softcover978-1-4471-2607-2
isbn_ebook978-0-85729-057-1Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

書目名稱Machine Learning for Vision-Based Motion Analysis影響因子(影響力)




書目名稱Machine Learning for Vision-Based Motion Analysis影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Vision-Based Motion Analysis網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Vision-Based Motion Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Vision-Based Motion Analysis被引頻次




書目名稱Machine Learning for Vision-Based Motion Analysis被引頻次學(xué)科排名




書目名稱Machine Learning for Vision-Based Motion Analysis年度引用




書目名稱Machine Learning for Vision-Based Motion Analysis年度引用學(xué)科排名




書目名稱Machine Learning for Vision-Based Motion Analysis讀者反饋




書目名稱Machine Learning for Vision-Based Motion Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:32 | 只看該作者
Manifold Learning for Multi-dimensional Auto-regressive Dynamical Models multidimensional autoregressive models of order 2. Experimental results concerning identity recognition are shown that prove how such optimal pullback Fisher metrics greatly improve classification performances.
板凳
發(fā)表于 2025-3-22 00:31:20 | 只看該作者
Discriminative Multiple Target Trackingimplicit exclusive principle is naturally reinforced in the proposed framework, which renders the tracker to be robust to cross occlusions among the multiple targets. We demonstrate the efficacy of the proposed multiple target tracker on benchmark visual tracking sequences, and real-world video sequences as well.
地板
發(fā)表于 2025-3-22 07:53:19 | 只看該作者
Recognition of Spatiotemporal Gestures in Sign Language Using Gesture Threshold HMMs system included testing the performance of conditional random fields (CRF), hidden CRF (HCRF) and latent-dynamic CRF (LDCRF) based systems and comparing these to our GT-HMM based system when recognizing motion gestures and identifying inter gesture transitions.
5#
發(fā)表于 2025-3-22 11:23:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:56 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:25 | 只看該作者
Learning Behavioral Patterns of Time Series for?Video-Surveillanceupervised and unsupervised settings and is based on a set of loosely labeled data acquired by a real video-surveillance system. The experiments highlight different peculiarities of the methods taken into consideration, and the final discussion guides the reader towards the most appropriate choice for a given scenario.
8#
發(fā)表于 2025-3-22 23:01:45 | 只看該作者
2191-6586 ffective vision-based motion understanding from a machine le.Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human
9#
發(fā)表于 2025-3-23 02:15:40 | 只看該作者
10#
發(fā)表于 2025-3-23 07:03:34 | 只看該作者
Mixed-State Markov Models in Image Motion Analysisn of mixed-state models to motion texture analysis. Motion textures correspond to the instantaneous apparent motion maps extracted from dynamic textures. They depict mixed-state motion values with a discrete state at zero and a Gaussian distribution for the rest. Mixed-state Markov random fields and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济南市| 额敏县| 堆龙德庆县| 彰化县| 报价| 丹阳市| 丁青县| 汉川市| 新宁县| 松溪县| 谢通门县| 炉霍县| 莱州市| 宜阳县| 拜泉县| 无锡市| 邯郸县| 朝阳县| 乌拉特前旗| 南城县| 藁城市| 安西县| 三门峡市| 灵石县| 广州市| 万全县| 治多县| 开化县| 平乐县| 和田县| 涿鹿县| 资阳市| 武安市| 开封市| 遵义县| 基隆市| 古交市| 庐江县| 古田县| 汶上县| 双峰县|