找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Microbial Phenotype Prediction; Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl

[復(fù)制鏈接]
查看: 46673|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:03:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning for Microbial Phenotype Prediction
編輯Roman Feldbauer
視頻videohttp://file.papertrans.cn/621/620632/620632.mp4
概述Publication in the field of Bioinformatic Science.Includes supplementary material:
叢書(shū)名稱BestMasters
圖書(shū)封面Titlebook: Machine Learning for Microbial Phenotype Prediction;  Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl
描述This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
出版日期Book 2016
關(guān)鍵詞bioinformatics; microorganisms; metagenomics; genotype; classification
版次1
doihttps://doi.org/10.1007/978-3-658-14319-0
isbn_softcover978-3-658-14318-3
isbn_ebook978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書(shū)目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction被引頻次




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction被引頻次學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction年度引用




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction年度引用學(xué)科排名




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋




書(shū)目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:34 | 只看該作者
2625-3577 microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-comp
地板
發(fā)表于 2025-3-22 05:20:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:55 | 只看該作者
2625-3577 netic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.978-3-658-14318-3978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
6#
發(fā)表于 2025-3-22 15:23:06 | 只看該作者
Book 2016. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
7#
發(fā)表于 2025-3-22 18:50:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:39 | 只看該作者
https://doi.org/10.1007/978-3-658-14319-0bioinformatics; microorganisms; metagenomics; genotype; classification
9#
發(fā)表于 2025-3-23 05:22:16 | 只看該作者
978-3-658-14318-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
10#
發(fā)表于 2025-3-23 08:56:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
财经| 庆安县| 历史| 东乌珠穆沁旗| 荔浦县| 万年县| 永善县| 龙山县| 旅游| 逊克县| 特克斯县| 三河市| 定南县| 渭源县| 株洲县| 康定县| 勐海县| 临猗县| 南召县| 武宣县| 拉萨市| 抚州市| 万盛区| 临泽县| 泾阳县| 黄陵县| 彭州市| 永仁县| 阳春市| 鄱阳县| 九龙城区| 师宗县| 武鸣县| 忻州市| 江津市| 大化| 许昌市| 汉中市| 永济市| 玉环县| 营山县|