找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Microbial Phenotype Prediction; Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl

[復(fù)制鏈接]
查看: 46674|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:03:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Microbial Phenotype Prediction
編輯Roman Feldbauer
視頻videohttp://file.papertrans.cn/621/620632/620632.mp4
概述Publication in the field of Bioinformatic Science.Includes supplementary material:
叢書名稱BestMasters
圖書封面Titlebook: Machine Learning for Microbial Phenotype Prediction;  Roman Feldbauer Book 2016 The Editor(s) (if applicable) and The Author(s), under excl
描述This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
出版日期Book 2016
關(guān)鍵詞bioinformatics; microorganisms; metagenomics; genotype; classification
版次1
doihttps://doi.org/10.1007/978-3-658-14319-0
isbn_softcover978-3-658-14318-3
isbn_ebook978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)




書目名稱Machine Learning for Microbial Phenotype Prediction影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Microbial Phenotype Prediction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Microbial Phenotype Prediction被引頻次




書目名稱Machine Learning for Microbial Phenotype Prediction被引頻次學(xué)科排名




書目名稱Machine Learning for Microbial Phenotype Prediction年度引用




書目名稱Machine Learning for Microbial Phenotype Prediction年度引用學(xué)科排名




書目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋




書目名稱Machine Learning for Microbial Phenotype Prediction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:34 | 只看該作者
2625-3577 microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-comp
地板
發(fā)表于 2025-3-22 05:20:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:55 | 只看該作者
2625-3577 netic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.978-3-658-14318-3978-3-658-14319-0Series ISSN 2625-3577 Series E-ISSN 2625-3615
6#
發(fā)表于 2025-3-22 15:23:06 | 只看該作者
Book 2016. Unraveling relationships between a living organism‘s genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data.
7#
發(fā)表于 2025-3-22 18:50:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:39 | 只看該作者
https://doi.org/10.1007/978-3-658-14319-0bioinformatics; microorganisms; metagenomics; genotype; classification
9#
發(fā)表于 2025-3-23 05:22:16 | 只看該作者
978-3-658-14318-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
10#
發(fā)表于 2025-3-23 08:56:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐业县| 卢龙县| 奉新县| 徐汇区| 咸阳市| 拉萨市| 彩票| 康平县| 漯河市| 丹寨县| 黎平县| 柞水县| 香格里拉县| 孟州市| 潮安县| 盐亭县| 诏安县| 杭锦旗| 秦皇岛市| 昌平区| 凤山县| 肥东县| 隆化县| 桃江县| 包头市| 泸州市| 河津市| 泸溪县| 吴旗县| 铜山县| 金溪县| 平昌县| 麟游县| 柯坪县| 海阳市| 广宁县| 日照市| 咸阳市| 泸水县| 惠州市| 绥化市|