找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management; Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe

[復(fù)制鏈接]
樓主: indulge
11#
發(fā)表于 2025-3-23 12:48:45 | 只看該作者
Landscape Applications of Machine Learning: Comparing Random Forests and Logistic Regression in Multe conifer forest. Visual inspection of the predicted occurrence probability maps shows that random forest produces predictions that are more discriminatory, with higher range of predicted probability and higher spatial heterogeneity than logistic regression. The logistic regression model has an AUC
12#
發(fā)表于 2025-3-23 17:24:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:40 | 只看該作者
Breaking Away from ‘Traditional’ Uses of Machine Learning: A Case Study Linking Sooty Shearwaters (, correlation of r?>?0.8 for SOI values from 0 to 14?months after peak chick size. A combination of parameters and regions best explain the variation in the SOI data, however the most important variables are those that represent general turbulence in the sub-Antarctic water and Polar front regions (i
16#
發(fā)表于 2025-3-24 08:19:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:48:04 | 只看該作者
Machine Learning Techniques for Quantifying Geographic Variation in Leach’s Storm-Petrel (,) Vocaliz handling. We found that random forests from the h2o and ‘randomForest’ packages in R performed best with regards to accuracy, ‘randomForest’ and ‘gbm’ performing best with regards to speed, and ‘tensor forest’ and ‘h2o’ implementations performing best with regards to memory. Furthermore, we were ab
18#
發(fā)表于 2025-3-24 14:58:09 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:30 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安国市| 广宗县| 仙居县| 桐城市| 应用必备| 巴青县| 分宜县| 永川市| 哈尔滨市| 丘北县| 灵武市| 南漳县| 灵山县| 奉贤区| 洛浦县| 阿鲁科尔沁旗| 贵德县| 兴化市| 本溪市| 土默特左旗| 磴口县| 新河县| 怀集县| 太仓市| 遂昌县| 凤城市| 定州市| 吴堡县| 于田县| 安岳县| 拉萨市| 那曲县| 巩义市| 揭西县| 屯留县| 寿宁县| 万盛区| 西充县| 麟游县| 阿拉尔市| 双城市|