找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management; Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe

[復(fù)制鏈接]
查看: 22718|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:02:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management
編輯Grant Humphries,Dawn R. Magness,Falk Huettmann
視頻videohttp://file.papertrans.cn/621/620615/620615.mp4
概述Shows ecologists cutting-edge methods that can help in understanding complex systems with multiple interacting variablesto and to form predictive hypotheses from large datasets.Provides practical exam
圖書封面Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management;  Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe
描述.Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often “messy” and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems.?Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in sp
出版日期Book 2018
關(guān)鍵詞Quantitative ecology; artificial intelligence; Statistics; data mining; machine learning; Wildlife biolog
版次1
doihttps://doi.org/10.1007/978-3-319-96978-7
isbn_ebook978-3-319-96978-7
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management影響因子(影響力)




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management被引頻次




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management被引頻次學(xué)科排名




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management年度引用




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management年度引用學(xué)科排名




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management讀者反饋




書目名稱Machine Learning for Ecology and Sustainable Natural Resource Management讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:25:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:40 | 只看該作者
Grant R. W. Humphries,Falk Huettmannere Aufmerksamkeit gewidmet...Das Lexikon der Informatik ist für jeden, der sich in die Welt der Informatik begrifflich sicher und kompetent bewegen will, ein unverzichtbarer Begleiter...Der Schwerpunkt der überarbeitung zur 14. Auflage lag auf dem Gebiet der Datensicherheit..978-3-540-72550-3
地板
發(fā)表于 2025-3-22 06:40:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:37 | 只看該作者
6#
發(fā)表于 2025-3-22 15:38:56 | 只看該作者
7#
發(fā)表于 2025-3-22 21:02:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:40 | 只看該作者
From Data Mining with Machine Learning to Inference in Diverse and Highly Complex Data: Some Shared any contractors, governments, a lifestyle and subsequent belief system and society. However, the methodology employed in traditional statistical analyses are well-published and known to violate many of their required statistical assumptions to allow for valid inferences. Often, this topic becomes th
9#
發(fā)表于 2025-3-23 03:41:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:20:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北安市| 两当县| 布尔津县| 崇文区| 林西县| 登封市| 西安市| 禹州市| 汉阴县| 赤城县| 太湖县| 马边| 江陵县| 贺州市| 临城县| 天峻县| 安宁市| 修文县| 应城市| 黄石市| 清远市| 驻马店市| 延庆县| 双流县| 奉化市| 泽库县| 永城市| 汤原县| 弥勒县| 峨边| 搜索| 宝山区| 天水市| 绥芬河市| 南木林县| 南和县| 宜兰县| 柳林县| 青浦区| 灵石县| 怀仁县|