找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Causal Inference; Sheng Li,Zhixuan Chu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: EXERT
41#
發(fā)表于 2025-3-28 15:58:19 | 只看該作者
Causal Inference on Graphsct fields, such as social network analysis, bioinformatics, crime forecasting, economics, and recommender systems. Different from most traditional causal inference studies, which focus on independent and identically distributed (i.i.d.) data, causal inference on graphs has recently attracted increas
42#
發(fā)表于 2025-3-28 19:28:31 | 只看該作者
43#
發(fā)表于 2025-3-29 00:24:15 | 只看該作者
Fair Machine Learning Through the Lens of Causality09) Causality. Cambridge University Press), this framework defines fairness in the categories of direct/indirect discrimination, system/group/individual-level discrimination, and their derivatives, e.g., indirect individual-level discrimination. The framework can unify various causal fairness notion
44#
發(fā)表于 2025-3-29 05:31:58 | 只看該作者
Causal Explainable AIance measurements such as accuracy. However, as machine learning techniques have been applied to fields that are highly sensitive to risk, such as healthcare, law enforcement, and finance, the trustworthiness of models, especially their explainability, has become an increasingly important concern. F
45#
發(fā)表于 2025-3-29 08:19:03 | 只看該作者
Causal Domain Generalization. assumption, independent and identically distributed assumption, states that the training and test data are sampled from the same distribution. On the other hand, real-world scenarios are more dynamic, with training and test data not always coming from the same distribution. In such cases, models b
46#
發(fā)表于 2025-3-29 12:14:32 | 只看該作者
Causal Inference and Natural Language Processingl questions: (1) how can NLP aid in causal inference when working with textual data, and (2) how can causal inference theory enhance the robustness and interpretability of NLP models? We present the latest developments and challenges in each area. Firstly, we discuss the difficulties associated with
47#
發(fā)表于 2025-3-29 19:19:41 | 只看該作者
48#
發(fā)表于 2025-3-29 23:31:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 惠州市| 丰台区| 水城县| 米泉市| 双牌县| 荣昌县| 彰化县| 鄢陵县| 剑阁县| 阿拉善左旗| 容城县| 大埔县| 苏尼特左旗| 通州市| 太和县| 虹口区| 安远县| 黄石市| 瑞金市| 教育| 仁布县| 海安县| 洛浦县| 南溪县| 大田县| 托克托县| 延津县| 无极县| 宜宾市| 五大连池市| 滦南县| 阿拉善右旗| 岳池县| 洛浦县| 衡水市| 巴塘县| 化隆| 顺昌县| 云林县| 桓仁|