找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Causal Inference; Sheng Li,Zhixuan Chu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
查看: 47416|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:14:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Causal Inference
編輯Sheng Li,Zhixuan Chu
視頻videohttp://file.papertrans.cn/621/620589/620589.mp4
概述Reviews novel causal inference methods with the help of machine learning to solve problems in a wide variety of fields.Addresses robustness and interpretability challenges posed by conventional ML met
圖書封面Titlebook: Machine Learning for Causal Inference;  Sheng Li,Zhixuan Chu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic
描述This book provides a deep understanding of the relationship between machine learning and causal inference. It covers a broad range of topics, starting with the preliminary foundations of causal inference, which include basic definitions, illustrative examples, and assumptions. It then delves into the different types of classical causal inference methods, such as matching, weighting, tree-based models, and more. Additionally, the book explores how machine learning can be used for causal effect estimation based on representation learning and graph learning. The contribution of causal inference in creating trustworthy machine learning systems to accomplish diversity, non-discrimination and fairness, transparency and explainability, generalization and robustness, and more is also discussed. The book also provides practical applications of causal inference in various domains such as natural language processing, recommender systems, computer vision, time series forecasting, and continual learning. Each chapter of the book is written by leading researchers in their respective fields...Machine Learning for Causal Inference. explores the challenges associated with the relationship between m
出版日期Book 2023
關(guān)鍵詞Causality; Counterfactuals; Treatment Effect Estimation; Causal Discovery; statistics
版次1
doihttps://doi.org/10.1007/978-3-031-35051-1
isbn_softcover978-3-031-35053-5
isbn_ebook978-3-031-35051-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning for Causal Inference影響因子(影響力)




書目名稱Machine Learning for Causal Inference影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Causal Inference網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Causal Inference網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Causal Inference被引頻次




書目名稱Machine Learning for Causal Inference被引頻次學(xué)科排名




書目名稱Machine Learning for Causal Inference年度引用




書目名稱Machine Learning for Causal Inference年度引用學(xué)科排名




書目名稱Machine Learning for Causal Inference讀者反饋




書目名稱Machine Learning for Causal Inference讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:11 | 只看該作者
https://doi.org/10.1007/978-3-031-35051-1Causality; Counterfactuals; Treatment Effect Estimation; Causal Discovery; statistics
板凳
發(fā)表于 2025-3-22 02:09:42 | 只看該作者
地板
發(fā)表于 2025-3-22 08:36:40 | 只看該作者
http://image.papertrans.cn/m/image/620589.jpg
5#
發(fā)表于 2025-3-22 09:10:47 | 只看該作者
6#
發(fā)表于 2025-3-22 15:50:23 | 只看該作者
Overview of the BookThis chapter briefly introduces the general concepts of machine learning and causal inference, discusses their connections, and then presents the organization of this book. The research topic of each chapter is also briefly described to serve as a road map of the book.
7#
發(fā)表于 2025-3-22 19:48:49 | 只看該作者
SummaryThis chapter summarizes this book and highlights research challenges and future opportunities on the topic of machine learning for causal inference.
8#
發(fā)表于 2025-3-22 21:54:21 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:34 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:23 | 只看該作者
and interpretability challenges posed by conventional ML metThis book provides a deep understanding of the relationship between machine learning and causal inference. It covers a broad range of topics, starting with the preliminary foundations of causal inference, which include basic definitions, il
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 鞍山市| 仁寿县| 铁力市| 桓台县| 洞头县| 潮安县| 安乡县| 保康县| 宜兰县| 千阳县| 乌审旗| 大港区| 林甸县| 西华县| 沙坪坝区| 镇原县| 宿州市| 万安县| 衡东县| 渭南市| 呈贡县| 石首市| 平原县| 三门县| 满洲里市| 通榆县| 定襄县| 库尔勒市| 彰化市| 海南省| 分宜县| 屯留县| 麻栗坡县| 昌邑市| 沿河| 三门县| 鄂州市| 西安市| 商都县| 隆安县|