找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Causal Inference; Sheng Li,Zhixuan Chu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: EXERT
11#
發(fā)表于 2025-3-23 10:36:37 | 只看該作者
Causal Explainable AIther improve the interpretability of machine learning models, some recent works in explainability have attempted to use causal reasoning techniques. In this chapter, we aim to provide an overview of causal explanation and discuss the design of . (CXAI).
12#
發(fā)表于 2025-3-23 15:29:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:41:36 | 只看該作者
Causal Effect Estimation: Basic Methodologiesptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. Most contents in this chapter are reprinted from our work (Yao et al. (ACM Trans Knowl Discov Data 15(5):1–46, 2021)).
14#
發(fā)表于 2025-3-23 23:02:03 | 只看該作者
tinual learning. Each chapter of the book is written by leading researchers in their respective fields...Machine Learning for Causal Inference. explores the challenges associated with the relationship between m978-3-031-35053-5978-3-031-35051-1
15#
發(fā)表于 2025-3-24 04:51:03 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:24:00 | 只看該作者
18#
發(fā)表于 2025-3-24 15:10:05 | 只看該作者
19#
發(fā)表于 2025-3-24 23:01:18 | 只看該作者
20#
發(fā)表于 2025-3-24 23:33:53 | 只看該作者
Causal Inference and Recommendationshelp readers gain a comprehensive understanding of this promising area. We start with the basic concepts of traditional RSs and their limitations due to the lack of causal reasoning ability. We then discuss how different causal inference techniques can be introduced to address these challenges, with
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍梧县| 永和县| 敖汉旗| 翁牛特旗| 新巴尔虎左旗| 吉水县| 兖州市| 鄯善县| 武隆县| 外汇| 普定县| 嘉祥县| 汕头市| 北票市| 冷水江市| 灌云县| 丹凤县| 巴里| 陈巴尔虎旗| 哈尔滨市| 秦安县| 大城县| 玉环县| 淅川县| 丘北县| 洛南县| 镇平县| 浮山县| 白河县| 大新县| 北川| 金秀| 托里县| 陇南市| 遵义县| 昌乐县| 乐至县| 花垣县| 敖汉旗| 基隆市| 定西市|