找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases, Part II; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Con

[復制鏈接]
查看: 15710|回復: 59
樓主
發(fā)表于 2025-3-21 16:33:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases, Part II
副標題European Conference,
編輯Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg
視頻videohttp://file.papertrans.cn/621/620521/620521.mp4
概述Fast-track conference proceedings.State-of-the-art research.Up-to-date results
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases, Part II; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Con
描述This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011.The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.
出版日期Conference proceedings 2011
關鍵詞decision theory; high-dimensional clustering; natural language processing; recommender systems; self-org
版次1
doihttps://doi.org/10.1007/978-3-642-23783-6
isbn_softcover978-3-642-23782-9
isbn_ebook978-3-642-23783-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Berlin Heidelberg 2011
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases, Part II影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II影響因子(影響力)學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II網(wǎng)絡公開度




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II網(wǎng)絡公開度學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II被引頻次學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II年度引用學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:20:49 | 只看該作者
Mining Research Topic-Related Influence between Academia and Industrys how influence, ideas, information propagate in the network. Similar problems have been proposed on co-authorship networks where the goal is to differentiate the social influences on research topic level and quantify the strength of the influence. In this work, we are interested in the problem of m
板凳
發(fā)表于 2025-3-22 03:43:24 | 只看該作者
Typology of Mixed-Membership Models: Towards a Design Methodctures with structures known or assumed in the data, we propose how models can be constructed in a controlled way, using the numerical properties of data likelihood and Gibbs full conditionals as predictors of model behavior. To illustrate this “bottom-up” design method, example models are construct
地板
發(fā)表于 2025-3-22 05:28:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:48:15 | 只看該作者
6#
發(fā)表于 2025-3-22 14:57:40 | 只看該作者
Online Structure Learning for Markov Logic Networksfor large datasets with thousands of training examples which may not even all fit in main memory. To address this issue, previous work has used online learning to train MLNs. However, they all assume that the model’s structure (set of logical clauses) is given, and only learn the model’s parameters.
7#
發(fā)表于 2025-3-22 17:27:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:52:34 | 只看該作者
10#
發(fā)表于 2025-3-23 05:52:14 | 只看該作者
Motion Segmentation by Model-Based Clustering of Incomplete Trajectories contribution of our method is that the trajectories are automatically extracted from the video sequence and they are provided directly to a model-based clustering approach. In most other methodologies, the latter constitutes a difficult part since the resulting feature trajectories have a short dur
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
山丹县| 鲜城| 龙泉市| 杭锦后旗| 辽宁省| 三原县| 元朗区| 上杭县| 边坝县| 平山县| 鹤壁市| 五大连池市| 广宗县| 兰西县| 乌兰浩特市| 合作市| 肥乡县| 甘谷县| 华亭县| 仁化县| 铁岭市| 怀远县| 洮南市| 昌图县| 长寿区| 广德县| 马公市| 江孜县| 武宁县| 阿巴嘎旗| 沾益县| 舟山市| 贡嘎县| 保德县| 若尔盖县| 驻马店市| 疏附县| 贵港市| 南华县| 浏阳市| 贵南县|