找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases, Part II; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Con

[復(fù)制鏈接]
查看: 15711|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:33:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases, Part II
副標(biāo)題European Conference,
編輯Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg
視頻videohttp://file.papertrans.cn/621/620521/620521.mp4
概述Fast-track conference proceedings.State-of-the-art research.Up-to-date results
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases, Part II; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Con
描述This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011.The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.
出版日期Conference proceedings 2011
關(guān)鍵詞decision theory; high-dimensional clustering; natural language processing; recommender systems; self-org
版次1
doihttps://doi.org/10.1007/978-3-642-23783-6
isbn_softcover978-3-642-23782-9
isbn_ebook978-3-642-23783-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Berlin Heidelberg 2011
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases, Part II影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases, Part II讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:49 | 只看該作者
Mining Research Topic-Related Influence between Academia and Industrys how influence, ideas, information propagate in the network. Similar problems have been proposed on co-authorship networks where the goal is to differentiate the social influences on research topic level and quantify the strength of the influence. In this work, we are interested in the problem of m
板凳
發(fā)表于 2025-3-22 03:43:24 | 只看該作者
Typology of Mixed-Membership Models: Towards a Design Methodctures with structures known or assumed in the data, we propose how models can be constructed in a controlled way, using the numerical properties of data likelihood and Gibbs full conditionals as predictors of model behavior. To illustrate this “bottom-up” design method, example models are construct
地板
發(fā)表于 2025-3-22 05:28:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:48:15 | 只看該作者
6#
發(fā)表于 2025-3-22 14:57:40 | 只看該作者
Online Structure Learning for Markov Logic Networksfor large datasets with thousands of training examples which may not even all fit in main memory. To address this issue, previous work has used online learning to train MLNs. However, they all assume that the model’s structure (set of logical clauses) is given, and only learn the model’s parameters.
7#
發(fā)表于 2025-3-22 17:27:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:52:34 | 只看該作者
10#
發(fā)表于 2025-3-23 05:52:14 | 只看該作者
Motion Segmentation by Model-Based Clustering of Incomplete Trajectories contribution of our method is that the trajectories are automatically extracted from the video sequence and they are provided directly to a model-based clustering approach. In most other methodologies, the latter constitutes a difficult part since the resulting feature trajectories have a short dur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福鼎市| 乐山市| 于都县| 新绛县| 扶风县| 怀集县| 鄂尔多斯市| 涡阳县| 内黄县| 进贤县| 左云县| 九龙县| 丁青县| 阳新县| 灯塔市| 米林县| 新平| 莫力| 拜城县| 抚远县| 余庆县| 娱乐| 富阳市| 阆中市| 富宁县| 民和| 全椒县| 琼海市| 屏山县| 金阳县| 平谷区| 专栏| 巍山| 昌黎县| 盘锦市| 尉犁县| 始兴县| 县级市| 乌海市| 渭南市| 张家港市|