找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip ?elezny Conference pro

[復制鏈接]
樓主: 根深蒂固
21#
發(fā)表于 2025-3-25 03:20:58 | 只看該作者
22#
發(fā)表于 2025-3-25 09:29:33 | 只看該作者
23#
發(fā)表于 2025-3-25 14:45:59 | 只看該作者
0302-9743 dings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers
24#
發(fā)表于 2025-3-25 16:56:12 | 只看該作者
25#
發(fā)表于 2025-3-25 20:43:25 | 只看該作者
Bundle CDN: A Highly Parallelized Approach for Large-Scale ?1-Regularized Logistic Regressionional Armijo line search to obtain the stepsize. By theoretical analysis on global convergence, we show that BCDN is guaranteed to converge with a high DOP. Experimental evaluations over five public datasets show that BCDN can better exploit parallelism and outperforms state-of-the-art algorithms in speed, without losing testing accuracy.
26#
發(fā)表于 2025-3-26 03:09:22 | 只看該作者
MORD: Multi-class Classifier for Ordinal Regressions on standard benchmarks as well as in solving a real-life problem. In particular, we show that the proposed piece-wise ordinal classifier applied to visual age estimation outperforms other standard prediction models.
27#
發(fā)表于 2025-3-26 04:57:40 | 只看該作者
28#
發(fā)表于 2025-3-26 08:47:00 | 只看該作者
AR-Boost: Reducing Overfitting by a Robust Data-Driven Regularization Strategynables a natural extension to multiclass boosting, and further reduces overfitting in both the binary and multiclass cases. We derive bounds for training and generalization errors, and relate them to AdaBoost. Finally, we show empirical results on benchmark data that establish the robustness of our approach and improved performance overall.
29#
發(fā)表于 2025-3-26 13:18:53 | 只看該作者
Exploratory Learningres different numbers of classes while learning. “Exploratory” SSL greatly improves performance on three datasets in terms of F1 on the classes . seed examples—i.e., the classes which are expected to be in the data. Our Exploratory EM algorithm also outperforms a SSL method based non-parametric Bayesian clustering.
30#
發(fā)表于 2025-3-26 18:06:01 | 只看該作者
PSSDL: Probabilistic Semi-supervised Dictionary Learningictionary learning which uses both the labeled and unlabeled data. Experimental results demonstrate that the performance of the proposed method is significantly better than the state of the art dictionary based classification methods.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙州县| 遂宁市| 诏安县| 扎兰屯市| 崇左市| 桂东县| 融水| 靖远县| 景德镇市| 广东省| 蓬溪县| 筠连县| 丰镇市| 泰顺县| 十堰市| 启东市| 黄山市| 偏关县| 隆德县| 新晃| 康乐县| 南充市| 诸暨市| 麟游县| 济源市| 临洮县| 铅山县| 柳河县| 革吉县| 龙岩市| 碌曲县| 满洲里市| 元谋县| 庆元县| 邵东县| 师宗县| 木里| 呼图壁县| 莱西市| 美姑县| 红河县|