找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip ?elezny Conference pro

[復(fù)制鏈接]
查看: 35258|回復(fù): 63
樓主
發(fā)表于 2025-3-21 18:07:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases
副標(biāo)題European Conference,
編輯Hendrik Blockeel,Kristian Kersting,Filip ?elezny
視頻videohttp://file.papertrans.cn/621/620518/620518.mp4
概述State-of-the-art research.Up-to-date results.Unique visibility
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip ?elezny Conference pro
描述This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
出版日期Conference proceedings 2013
關(guān)鍵詞bayesian network; data mining; graph-based methods; parallel optimization; social responsibility
版次1
doihttps://doi.org/10.1007/978-3-642-40994-3
isbn_softcover978-3-642-40993-6
isbn_ebook978-3-642-40994-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:16 | 只看該作者
Parallel Boosting with Momentumorithm, which we call BOOM, for .sting with .omentum, enjoys the merits of both techniques. Namely, BOOM retains the momentum and convergence properties of the accelerated gradient method while taking into account the curvature of the objective function. We describe a . implementation of BOOM which
板凳
發(fā)表于 2025-3-22 01:14:53 | 只看該作者
Inner Ensembles: Using Ensemble Methods Inside the Learning Algorithmied in many more situations than they have been previously. Instead of using them only to combine the output of an algorithm, we can apply them to the decisions made inside the learning algorithm, itself. We call this approach Inner Ensembles. The main contribution of this work is to demonstrate how
地板
發(fā)表于 2025-3-22 05:52:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:59:04 | 只看該作者
6#
發(fā)表于 2025-3-22 14:44:07 | 只看該作者
Bundle CDN: A Highly Parallelized Approach for Large-Scale ?1-Regularized Logistic Regression by their divergence under high degree of parallelism (DOP), or need data pre-process to avoid divergence. To better exploit parallelism, we propose a coordinate descent based parallel algorithm without needing of data pre-process, termed as Bundle Coordinate Descent Newton (BCDN), and apply it to l
7#
發(fā)表于 2025-3-22 18:00:22 | 只看該作者
MORD: Multi-class Classifier for Ordinal Regression only allows to design new learning algorithms for ordinal regression using existing methods for multi-class classification but it also allows to derive new models for ordinal regression. For example, one can convert learning of ordinal classifier with (almost) arbitrary loss function to a convex un
8#
發(fā)表于 2025-3-22 21:51:57 | 只看該作者
Identifiability of Model Properties in Over-Parameterized Model Classess (.,.(.))), and the space of queries for the learned model (predicting function values for new examples .). However, in many learning scenarios the 3-way association between hypotheses, data, and queries can really be much looser. Model classes can be over-parameterized, i.e., different hypotheses
9#
發(fā)表于 2025-3-23 05:19:35 | 只看該作者
Exploratory Learninged examples are provided for some classes. In this paper we present variants of well-known semi-supervised multiclass learning methods that are robust when the data contains an unknown number of classes. In particular, we present an “exploratory” extension of expectation-maximization (EM) that explo
10#
發(fā)表于 2025-3-23 06:01:07 | 只看該作者
Semi-supervised Gaussian Process Ordinal Regressionn while unlabeled ordinal data are available in abundance. Designing a probabilistic semi-supervised classifier to perform ordinal regression is challenging. In this work, we propose a novel approach for semi-supervised ordinal regression using Gaussian Processes (GP). It uses the expectation-propag
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙井市| 田东县| 温宿县| 景东| 建水县| 贺兰县| 恩平市| 佛教| 大田县| 连州市| 澄城县| 凤台县| 曲水县| 兴和县| 二连浩特市| 成武县| 内黄县| 阜新市| 永吉县| 同仁县| 九寨沟县| 温泉县| 邢台县| 同心县| 永兴县| 莱芜市| 崇礼县| 个旧市| 理塘县| 鄢陵县| 渭南市| 棋牌| 高青县| 乐清市| 勐海县| 辽源市| 武平县| 梓潼县| 刚察县| 泾川县| 耿马|