找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases, Part III; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Co

[復(fù)制鏈接]
樓主: 頌歌
11#
發(fā)表于 2025-3-23 09:50:48 | 只看該作者
Learning First-Order Definite Theories via Object-Based Queriest-order concepts to computers. Prior work has shown that first order Horn theories can be learned using a polynomial number of membership and equivalence queries [6]. However, these query types are sometimes unnatural for humans to answer and only capture a small fraction of the information that a h
12#
發(fā)表于 2025-3-23 17:22:15 | 只看該作者
Fast Support Vector Machines for Structural Kernelsal kernels: (i) we exploit a compact yet exact representation of cutting plane models using directed acyclic graphs to speed up both training and classification, (ii) we provide a parallel implementation, which makes the training scale almost linearly with the number of CPUs, and (iii) we propose an
13#
發(fā)表于 2025-3-23 19:42:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:14 | 只看該作者
Compact Coding for Hyperplane Classifiers in Heterogeneous Environmentuce the high cost of inquiring the labeled information for the target task. However, how to avoid . which happens due to different distributions of tasks in heterogeneous environment is still a open problem. In order to handle this kind of issue, we propose a Compact Coding method for Hyperplane Cla
15#
發(fā)表于 2025-3-24 06:11:24 | 只看該作者
Multi-label Ensemble Learningting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can be weak. It is well known that ensemble learning can
16#
發(fā)表于 2025-3-24 06:51:08 | 只看該作者
Rule-Based Active Sampling for Learning to Rankng these labeled training sets is usually very costly as it requires human annotators to assess the relevance or order the elements in the training set. Recently, active learning alternatives have been proposed to reduce the labeling effort by selectively sampling an unlabeled set. In this paper we
17#
發(fā)表于 2025-3-24 12:53:39 | 只看該作者
18#
發(fā)表于 2025-3-24 15:45:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:28:50 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:40 | 只看該作者
Matthew Robards,Peter Sunehag,Scott Sanner,Bhaskara Marthi wesentlichen Anteil daran haben Schulleistungsstudien wie z.?B. PISA, in denen Finnland regelm??ig überdurchschnittlich gut abschneidet. Dabei scheint es Finnland zu gelingen, mit moderaten Ausgaben für das Bildungssystem einen überdurchschnittlichen Erfolg in Bezug auf die Bildungsqualit?t und Cha
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天长市| 香港| 兰考县| 瓦房店市| 武威市| 麻江县| 河间市| 渝中区| 金昌市| 葵青区| 沁阳市| 连江县| 库车县| 霍邱县| 华容县| 噶尔县| 嘉义市| 闵行区| 延吉市| 潮州市| 荆门市| 当涂县| 博罗县| 临颍县| 全南县| 壶关县| 周至县| 雅江县| 龙岩市| 盐亭县| 郎溪县| 元谋县| 兴山县| 武穴市| 小金县| 和平县| 墨脱县| 麟游县| 平远县| 阳山县| 湖州市|