找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases, Part III; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Co

[復(fù)制鏈接]
查看: 36730|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:53:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III
副標(biāo)題European Conference,
編輯Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg
視頻videohttp://file.papertrans.cn/621/620506/620506.mp4
概述Fast-track conference proceedings.State-of-the-art research.Up-to-date results
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning and Knowledge Discovery in Databases, Part III; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Co
描述This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011.The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.
出版日期Conference proceedings 2011
關(guān)鍵詞decision theory; high-dimensional clustering; natural language processing; recommender systems; self-org
版次1
doihttps://doi.org/10.1007/978-3-642-23808-6
isbn_softcover978-3-642-23807-9
isbn_ebook978-3-642-23808-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Berlin Heidelberg 2011
The information of publication is updating

書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III影響因子(影響力)




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III被引頻次




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III被引頻次學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III年度引用




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III年度引用學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III讀者反饋




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases, Part III讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:08:29 | 只看該作者
Preference Elicitation and Inverse Reinforcement Learningn. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a posterior distribution on the agent’s preferences, policy and optionally, the obtained reward sequence, from observations. We examine the relation of the resulting approach to other statistical met
地板
發(fā)表于 2025-3-22 05:27:14 | 只看該作者
A Novel Framework for Locating Software Faults Using Latent Divergencest and is costly. Recent years have seen much progress in techniques for automated fault localization, specifically using program spectra – executions of failed and passed test runs provide a basis for isolating the faults. Despite the progress, fault localization in large programs remains a challeng
5#
發(fā)表于 2025-3-22 08:43:17 | 只看該作者
Transfer Learning with Adaptive Regularizersrm that matches with the learning task at hand. If the necessary domain expertise is rare or hard to formalize, it may be difficult to find a good regularizer. On the other hand, if plenty of related or similar data is available, it is a natural approach to adjust the regularizer for the new learnin
6#
發(fā)表于 2025-3-22 14:50:23 | 只看該作者
Multimodal Nonlinear Filtering Using Gauss-Hermite Quadratureas single Gaussian distributions. In nonlinear filtering problems the posterior state distribution can, however, take complex shapes and even become multimodal so that single Gaussians are no longer sufficient. A standard solution to this problem is to use a bank of independent filters that individu
7#
發(fā)表于 2025-3-22 17:25:27 | 只看該作者
Active Supervised Domain Adaptationning in a target domain can leverage information from a different but related source domain. Our proposed framework, Active Learning Domain Adapted (.), uses source domain knowledge to transfer information that facilitates active learning in the target domain. We propose two variants of .: a batch B
8#
發(fā)表于 2025-3-22 23:54:25 | 只看該作者
Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimatione mixtures generally outperform a single Markov tree maximizing the data likelihood, but are far more expensive to compute. In this paper, we describe new algorithms for approximating such models, with the aim of .. More specifically, we propose to use a filtering step obtained as a by-product from
9#
發(fā)表于 2025-3-23 04:31:03 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰顺县| 于田县| 扎赉特旗| 左权县| 随州市| 南通市| 瑞昌市| 利辛县| 孟津县| 厦门市| 洪洞县| 通化县| 张家港市| 大石桥市| 陆川县| 韩城市| 瑞安市| 虞城县| 乌什县| 黔江区| 旬阳县| 进贤县| 鄂尔多斯市| 延川县| 尼勒克县| 平顺县| 盐城市| 河源市| 靖州| 阿克苏市| 博白县| 芜湖县| 南平市| 卓尼县| 定襄县| 柳林县| 蕲春县| 曲松县| 平顺县| 金川县| 西平县|