找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation

[復(fù)制鏈接]
查看: 50507|回復(fù): 65
樓主
發(fā)表于 2025-3-21 18:24:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Data Mining in Pattern Recognition
副標(biāo)題14th International C
編輯Petra Perner
視頻videohttp://file.papertrans.cn/621/620464/620464.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation
描述.This two-volume set LNAI 10934 and LNAI 10935 constitutes the refereed proceedings of the 14th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2018, held in New York, NY, USA in July 2018.?.The 92 regular papers presented in this two-volume set were carefully reviewed and selected from 298 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as ?image mining, text mining, video mining, and Web mining..
出版日期Conference proceedings 2018
關(guān)鍵詞machine learning; data mining; pattern recognition; medical data mining; frequent item set mining; time s
版次1
doihttps://doi.org/10.1007/978-3-319-96133-0
isbn_softcover978-3-319-96132-3
isbn_ebook978-3-319-96133-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)




書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開(kāi)度




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:42 | 只看該作者
Fuzzy Networks Model, a Reliable Adoption in Corporations,s paper presents a Knowledge engineering application whereby a Fuzzy Network (FN) is used to build a complex computing model to reproduce corporate dynamics and to implement a Model Reference Adaptive Control (MARC) strategy for Corporate Control [.]. This model is used as a What If? Environment to
地板
發(fā)表于 2025-3-22 04:33:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:14 | 只看該作者
Understanding Customers and Their Grouping via WiFi Sensing for Business Revenue Forecasting,he most important components for the use of Internet access and other applications. In this work, we propose a WiFi-based sensing for store revenue forecasting by analyzing the customers’ behavior, especially the grouped customers’ behavior. Understanding customers’ behavior through WiFi-based sensi
6#
發(fā)表于 2025-3-22 15:18:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:56 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:34 | 只看該作者
Predicting Social Unrest Using GDELT,wer of machine learning (Random Forests, Boosting, and Neural Networks) to try to explain and predict when huge social unrest events (Huge social unrest events are major social unrest events as recognized by Wikipedia page ‘List of incidents of civil unrest in the United States’) might unfold. We ex
9#
發(fā)表于 2025-3-23 04:19:56 | 只看該作者
Ten Years of Relevance Score for Content Based Image Retrieval,esults by filling the semantic gap between the user needs and the automatic image description provided by different image representations. Including the human in the loop through Relevance Feedback (RF) mechanisms turned out to help improving the retrieval results in CBIR. In this paper, we claim th
10#
發(fā)表于 2025-3-23 08:55:01 | 只看該作者
When Different Is Wrong: Visual Unsupervised Validation for Web Information Extraction,action algorithm and hence further improve extraction results. The proposed validation method is unsupervised and can be integrated into most web information extraction systems effortlessly without any impact on existing processes, system’s robustness or maintenance. Instead of relying on visual pat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀来县| 兴国县| 抚顺县| 海阳市| 扎赉特旗| 若尔盖县| 东平县| 尖扎县| 栖霞市| 新化县| 原阳县| 资溪县| 南城县| 荆州市| 胶南市| 衡水市| 东乌| 昌宁县| 麻江县| 永善县| 马山县| 婺源县| 宝鸡市| 珠海市| 东海县| 澳门| 晋中市| 宜宾县| 柘荣县| 宜宾县| 凌源市| 镇雄县| 克拉玛依市| 儋州市| 大竹县| 衡山县| 平邑县| 石首市| 阜南县| 明溪县| 常熟市|