找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation

[復制鏈接]
查看: 50510|回復: 65
樓主
發(fā)表于 2025-3-21 18:24:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Data Mining in Pattern Recognition
副標題14th International C
編輯Petra Perner
視頻videohttp://file.papertrans.cn/621/620464/620464.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation
描述.This two-volume set LNAI 10934 and LNAI 10935 constitutes the refereed proceedings of the 14th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2018, held in New York, NY, USA in July 2018.?.The 92 regular papers presented in this two-volume set were carefully reviewed and selected from 298 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as ?image mining, text mining, video mining, and Web mining..
出版日期Conference proceedings 2018
關(guān)鍵詞machine learning; data mining; pattern recognition; medical data mining; frequent item set mining; time s
版次1
doihttps://doi.org/10.1007/978-3-319-96133-0
isbn_softcover978-3-319-96132-3
isbn_ebook978-3-319-96133-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)




書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)學科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度學科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次學科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用學科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:42 | 只看該作者
Fuzzy Networks Model, a Reliable Adoption in Corporations,s paper presents a Knowledge engineering application whereby a Fuzzy Network (FN) is used to build a complex computing model to reproduce corporate dynamics and to implement a Model Reference Adaptive Control (MARC) strategy for Corporate Control [.]. This model is used as a What If? Environment to
地板
發(fā)表于 2025-3-22 04:33:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:14 | 只看該作者
Understanding Customers and Their Grouping via WiFi Sensing for Business Revenue Forecasting,he most important components for the use of Internet access and other applications. In this work, we propose a WiFi-based sensing for store revenue forecasting by analyzing the customers’ behavior, especially the grouped customers’ behavior. Understanding customers’ behavior through WiFi-based sensi
6#
發(fā)表于 2025-3-22 15:18:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:56 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:34 | 只看該作者
Predicting Social Unrest Using GDELT,wer of machine learning (Random Forests, Boosting, and Neural Networks) to try to explain and predict when huge social unrest events (Huge social unrest events are major social unrest events as recognized by Wikipedia page ‘List of incidents of civil unrest in the United States’) might unfold. We ex
9#
發(fā)表于 2025-3-23 04:19:56 | 只看該作者
Ten Years of Relevance Score for Content Based Image Retrieval,esults by filling the semantic gap between the user needs and the automatic image description provided by different image representations. Including the human in the loop through Relevance Feedback (RF) mechanisms turned out to help improving the retrieval results in CBIR. In this paper, we claim th
10#
發(fā)表于 2025-3-23 08:55:01 | 只看該作者
When Different Is Wrong: Visual Unsupervised Validation for Web Information Extraction,action algorithm and hence further improve extraction results. The proposed validation method is unsupervised and can be integrated into most web information extraction systems effortlessly without any impact on existing processes, system’s robustness or maintenance. Instead of relying on visual pat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
济宁市| 黄浦区| 桦川县| 达拉特旗| 滦南县| 依安县| 阳信县| 铅山县| 东台市| 清苑县| 江阴市| 沅江市| 莱芜市| 靖远县| 五华县| 定南县| 桦南县| 大港区| 原平市| 通山县| 湘潭市| 庆阳市| 深泽县| 樟树市| 吉木乃县| 萝北县| 盐池县| 福清市| 江孜县| 增城市| 连平县| 宁国市| 吴川市| 洛隆县| 稻城县| 泸水县| 贺兰县| 大足县| 凤城市| 永顺县| 比如县|