找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Techniques for Online Social Networks; Tansel ?zyer,Reda Alhajj Book 2018 Springer International Publishing AG, part of S

[復(fù)制鏈接]
樓主: 不幸的你
21#
發(fā)表于 2025-3-25 05:48:46 | 只看該作者
2190-5428 cial networks.Contains case studies describing how various dThe book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are c
22#
發(fā)表于 2025-3-25 10:08:26 | 只看該作者
23#
發(fā)表于 2025-3-25 15:06:42 | 只看該作者
Ameliorating Search Results Recommendation System Based on ,-Means Clustering Algorithm and Distancof a clustering algorithm combined with a distance measure filters and classifies the results in order to reduce the amount of documents efficiently and gain in terms of documents quality and search time. The proposed architecture is based on . clustering algorithm and the cosine similarity measure. The system showed encouraging results.
24#
發(fā)表于 2025-3-25 18:11:24 | 只看該作者
Dynamics of Large-Scale Networks Following a Merger,r the merger. As the original avatars are gradually removed, these structures slowly dissolve, but they remain observable for a surprisingly long time. We present a number of visualizations illustrating the post-merger dynamics and discuss time evolution of selected quantities characterizing the topology of the network.
25#
發(fā)表于 2025-3-25 22:54:27 | 只看該作者
Text-Based Analysis of Emotion by Considering Tweets,facebook, twitter, etc. is a very challenging task, still it can give researchers a valuable insight into the complexity of human emotions. In this paper, test from tweets has been used for detecting 32 primary human emotions and then the emotions were analyzed against gender, location, and temporal information of the considered people.
26#
發(fā)表于 2025-3-26 01:58:03 | 只看該作者
2190-5428 overed. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. .Machine Learning Techniques for Online Social Networks .will appeal to researchers and students in these fields.?.978-3-030-07896-6978-3-319-89932-9Series ISSN 2190-5428 Series E-ISSN 2190-5436
27#
發(fā)表于 2025-3-26 05:52:08 | 只看該作者
28#
發(fā)表于 2025-3-26 09:01:44 | 只看該作者
Book 2018cal aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. .Machine Learning Techniques for Online Social Networks .w
29#
發(fā)表于 2025-3-26 16:25:59 | 只看該作者
30#
發(fā)表于 2025-3-26 20:08:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 崇州市| 花莲县| 全椒县| 武川县| 正镶白旗| 奉化市| 方山县| 广河县| 钦州市| 阿拉善盟| 浮梁县| 中超| 百色市| 璧山县| 安溪县| 凤翔县| 济宁市| 武义县| 巴青县| 乐安县| 兴业县| 防城港市| 太原市| 五河县| 吉首市| 延庆县| 衢州市| 沈丘县| 祁阳县| 海原县| 屯留县| 太仆寺旗| 崇州市| 灵川县| 温泉县| 昌图县| 邹城市| 望奎县| 濉溪县| 台南县|