找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Projects for .NET Developers; Mathias Brandewinder Book 2015 Mathias Brandewinder 2015

[復(fù)制鏈接]
查看: 54243|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:40:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Projects for .NET Developers
編輯Mathias Brandewinder
視頻videohttp://file.papertrans.cn/621/620418/620418.mp4
概述Machine Learning Projects for .NET.Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-
圖書封面Titlebook: Machine Learning Projects for .NET Developers;  Mathias Brandewinder Book 2015 Mathias Brandewinder 2015
描述.Machine Learning Projects for .NET Developers. shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context..In a series of fascinating projects, you’ll learn how to:.Build an optical character recognition (OCR) system from scratch.Code a spam filter that learns by example.Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language).Transform your data intoinformative features, and use them to make accurate predictions.Find patterns in data when you don’t know what you’re looking for.Predict numerical values using regression models.Implement an intelligent game that learns how to play from experience.Along the way, you’ll learn fund
出版日期Book 2015
版次1
doihttps://doi.org/10.1007/978-1-4302-6766-9
isbn_softcover978-1-4302-6767-6
isbn_ebook978-1-4302-6766-9
copyrightMathias Brandewinder 2015
The information of publication is updating

書目名稱Machine Learning Projects for .NET Developers影響因子(影響力)




書目名稱Machine Learning Projects for .NET Developers影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers網(wǎng)絡(luò)公開度




書目名稱Machine Learning Projects for .NET Developers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers被引頻次




書目名稱Machine Learning Projects for .NET Developers被引頻次學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers年度引用




書目名稱Machine Learning Projects for .NET Developers年度引用學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers讀者反饋




書目名稱Machine Learning Projects for .NET Developers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:12 | 只看該作者
http://image.papertrans.cn/m/image/620418.jpg
板凳
發(fā)表于 2025-3-22 03:14:20 | 只看該作者
978-1-4302-6767-6Mathias Brandewinder 2015
地板
發(fā)表于 2025-3-22 05:37:24 | 只看該作者
Conclusion,r two along the way. Before we part ways, I figured it might be worthwhile to take a look back at what we have accomplished together, and perhaps also see if there are some broader themes that apply across the chapters, in spite of their profound differences.
5#
發(fā)表于 2025-3-22 11:37:44 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:49 | 只看該作者
256 Shades of Gray,s it different from statistics? On the surface, machine learning might appear to be an exotic and intimidating specialty that uses fancy mathematics and algorithms, with little in common with the daily activities of a software engineer.
9#
發(fā)表于 2025-3-23 03:58:19 | 只看該作者
Of Bikes and Men,eristics of a used car (age, miles, engine size, and so forth), how would you go about predicting how much it is going to sell for? This problem doesn‘t really fit the pattern of classification. What we need here is a model that differs from classification models in at least two aspects:
10#
發(fā)表于 2025-3-23 07:45:56 | 只看該作者
Digits, Revisited, discovering machine learning concepts in the process. By contrast, this chapter is more intended as a series of practical tips which can be useful in various situations. We will use the digit recognizer model we created in . as a familiar reference point, and use it to illustrate techniques that are broadly applicable to other situations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高阳县| 屏边| 红安县| 湄潭县| 沙河市| 酒泉市| 根河市| 深泽县| 旬阳县| 长葛市| 东乌珠穆沁旗| 双峰县| 靖远县| 古浪县| 华池县| 祁东县| 赤峰市| 德阳市| 仁寿县| 东辽县| 庆阳市| 关岭| 瓦房店市| 五大连池市| 濉溪县| 宜兰市| 仁化县| 平谷区| 双鸭山市| 镇坪县| 和平区| 新安县| 凤山县| 大丰市| 普定县| 宣汉县| 额敏县| 宁化县| 沧州市| 南安市| 大余县|