找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Projects for .NET Developers; Mathias Brandewinder Book 2015 Mathias Brandewinder 2015

[復(fù)制鏈接]
查看: 54246|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:40:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Projects for .NET Developers
編輯Mathias Brandewinder
視頻videohttp://file.papertrans.cn/621/620418/620418.mp4
概述Machine Learning Projects for .NET.Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-
圖書封面Titlebook: Machine Learning Projects for .NET Developers;  Mathias Brandewinder Book 2015 Mathias Brandewinder 2015
描述.Machine Learning Projects for .NET Developers. shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context..In a series of fascinating projects, you’ll learn how to:.Build an optical character recognition (OCR) system from scratch.Code a spam filter that learns by example.Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language).Transform your data intoinformative features, and use them to make accurate predictions.Find patterns in data when you don’t know what you’re looking for.Predict numerical values using regression models.Implement an intelligent game that learns how to play from experience.Along the way, you’ll learn fund
出版日期Book 2015
版次1
doihttps://doi.org/10.1007/978-1-4302-6766-9
isbn_softcover978-1-4302-6767-6
isbn_ebook978-1-4302-6766-9
copyrightMathias Brandewinder 2015
The information of publication is updating

書目名稱Machine Learning Projects for .NET Developers影響因子(影響力)




書目名稱Machine Learning Projects for .NET Developers影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers網(wǎng)絡(luò)公開度




書目名稱Machine Learning Projects for .NET Developers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers被引頻次




書目名稱Machine Learning Projects for .NET Developers被引頻次學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers年度引用




書目名稱Machine Learning Projects for .NET Developers年度引用學(xué)科排名




書目名稱Machine Learning Projects for .NET Developers讀者反饋




書目名稱Machine Learning Projects for .NET Developers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:12 | 只看該作者
http://image.papertrans.cn/m/image/620418.jpg
板凳
發(fā)表于 2025-3-22 03:14:20 | 只看該作者
978-1-4302-6767-6Mathias Brandewinder 2015
地板
發(fā)表于 2025-3-22 05:37:24 | 只看該作者
Conclusion,r two along the way. Before we part ways, I figured it might be worthwhile to take a look back at what we have accomplished together, and perhaps also see if there are some broader themes that apply across the chapters, in spite of their profound differences.
5#
發(fā)表于 2025-3-22 11:37:44 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:49 | 只看該作者
256 Shades of Gray,s it different from statistics? On the surface, machine learning might appear to be an exotic and intimidating specialty that uses fancy mathematics and algorithms, with little in common with the daily activities of a software engineer.
9#
發(fā)表于 2025-3-23 03:58:19 | 只看該作者
Of Bikes and Men,eristics of a used car (age, miles, engine size, and so forth), how would you go about predicting how much it is going to sell for? This problem doesn‘t really fit the pattern of classification. What we need here is a model that differs from classification models in at least two aspects:
10#
發(fā)表于 2025-3-23 07:45:56 | 只看該作者
Digits, Revisited, discovering machine learning concepts in the process. By contrast, this chapter is more intended as a series of practical tips which can be useful in various situations. We will use the digit recognizer model we created in . as a familiar reference point, and use it to illustrate techniques that are broadly applicable to other situations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 通山县| 旺苍县| 宿松县| 云龙县| 永康市| 自治县| 阿瓦提县| 容城县| 五莲县| 荣成市| 滁州市| 方正县| 开鲁县| 宝清县| 竹北市| 濮阳市| 怀宁县| 湖南省| 聂荣县| 紫阳县| 桃园县| 威信县| 甘谷县| 色达县| 繁昌县| 柳江县| 县级市| 安国市| 江口县| 河曲县| 临西县| 麻江县| 凤山县| 浦县| 法库县| 敖汉旗| 营口市| 额济纳旗| 西平县| 广饶县|