找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lyapunov-type Inequalities; With Applications to Juan Pablo Pinasco Book 2013 Juan Pablo Pinasco 2013 Lyapunov inequality.Orlicz spaces.eig

[復(fù)制鏈接]
查看: 20426|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:06:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lyapunov-type Inequalities
副標(biāo)題With Applications to
編輯Juan Pablo Pinasco
視頻videohttp://file.papertrans.cn/590/589177/589177.mp4
概述Emphasizes the use of Lyapunov-type inequalities to obtain lower bounds for eigenvalues.Devoted to more general nonlinear equations, systems of differential equations, or partial differential equation
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Lyapunov-type Inequalities; With Applications to Juan Pablo Pinasco Book 2013 Juan Pablo Pinasco 2013 Lyapunov inequality.Orlicz spaces.eig
描述?The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of? eigenvalue asymptotics driven by the coupling of the equations instead of the order of the equations. For p=2, the coupling and the order of the equations are the same, so this cannot happen in linear problems. ?Another striking difference between linear and quasilinear second order differential operators is the existence of Lyapunov-type inequalities in R^n when p>n. Since the linear case corresponds to p=2, for the usual Laplacian there exists a Lyapunov inequality only for one-dimensional problems. For linear higher order problems, several Lyapunov-type inequalities were found by Egorov and Kondratiev and collected in On spectral theory of elliptic operators, Birkhauser Basel 1996. However, there exists an interesting interplay between the dimension of the underlying space, the order of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed. ? Also, the Lyapunov inequality for differ
出版日期Book 2013
關(guān)鍵詞Lyapunov inequality; Orlicz spaces; eigenvalue bounds; integral inequalities; p-laplace operator; quasili
版次1
doihttps://doi.org/10.1007/978-1-4614-8523-0
isbn_softcover978-1-4614-8522-3
isbn_ebook978-1-4614-8523-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightJuan Pablo Pinasco 2013
The information of publication is updating

書目名稱Lyapunov-type Inequalities影響因子(影響力)




書目名稱Lyapunov-type Inequalities影響因子(影響力)學(xué)科排名




書目名稱Lyapunov-type Inequalities網(wǎng)絡(luò)公開度




書目名稱Lyapunov-type Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lyapunov-type Inequalities被引頻次




書目名稱Lyapunov-type Inequalities被引頻次學(xué)科排名




書目名稱Lyapunov-type Inequalities年度引用




書目名稱Lyapunov-type Inequalities年度引用學(xué)科排名




書目名稱Lyapunov-type Inequalities讀者反饋




書目名稱Lyapunov-type Inequalities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:09 | 只看該作者
sponsible for the chapters as follows: Mittelstaedt for Chaps. 4, 9. 3, 10, 11. 2, 12, 13 and Weingartner for Chaps. 1, 2, 3, 5, 7, 8. 2, 9. 2, 9. 4. The remaining parts are joint sections. Most of the chapters are formulated as questions and they begin with arguments pro and contra. Then a detailed
板凳
發(fā)表于 2025-3-22 00:46:31 | 只看該作者
地板
發(fā)表于 2025-3-22 07:01:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:55 | 只看該作者
Juan Pablo Pinascoand Weingartner for Chaps. 1, 2, 3, 5, 7, 8. 2, 9. 2, 9. 4. The remaining parts are joint sections. Most of the chapters are formulated as questions and they begin with arguments pro and contra. Then a detailed978-3-642-06322-0978-3-540-28303-4
7#
發(fā)表于 2025-3-22 17:16:54 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:01 | 只看該作者
9#
發(fā)表于 2025-3-23 04:18:10 | 只看該作者
2191-8198 der of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed. ? Also, the Lyapunov inequality for differ978-1-4614-8522-3978-1-4614-8523-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
10#
發(fā)表于 2025-3-23 05:32:04 | 只看該作者
,Lyapunov’s Inequality,In this chapter we give some proofs of Lyapunov’ inequality, in both the linear and nonlinear contexts.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 巨鹿县| 沾化县| 孟津县| 东宁县| 宜丰县| 荣成市| 涪陵区| 闸北区| 岳阳市| 浦县| 澄江县| 普洱| 东城区| 黑河市| 临城县| 鹤庆县| 龙州县| 三江| 龙胜| 汾西县| 邢台县| 北海市| 乾安县| 炎陵县| 沁源县| 盐边县| 运城市| 新兴县| 东乌珠穆沁旗| 金昌市| 水城县| 额济纳旗| 九江市| 汶川县| 河西区| 广德县| 汕头市| 青川县| 榆中县| 达日县|