找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lyapunov-type Inequalities; With Applications to Juan Pablo Pinasco Book 2013 Juan Pablo Pinasco 2013 Lyapunov inequality.Orlicz spaces.eig

[復制鏈接]
樓主: firearm
11#
發(fā)表于 2025-3-23 10:53:25 | 只看該作者
,Nehari–Calogero–Cohn Inequality,In this chapter, we review the proofs of Nehari, Calogero, and Cohn for Theorem C, together with some generalizations for the .-Laplacian eigenvalues and higher-order problems.
12#
發(fā)表于 2025-3-23 17:34:03 | 只看該作者
Miscellaneous Topics,In this chapter we prove several Lyapunov-type inequalities for systems of ordinary differential equations, one-dimensional nonlinear operators in Orlicz spaces, and quasilinear equations in . ..
13#
發(fā)表于 2025-3-23 20:15:00 | 只看該作者
https://doi.org/10.1007/978-1-4614-8523-0Lyapunov inequality; Orlicz spaces; eigenvalue bounds; integral inequalities; p-laplace operator; quasili
14#
發(fā)表于 2025-3-24 02:09:45 | 只看該作者
15#
發(fā)表于 2025-3-24 06:00:20 | 只看該作者
978-1-4614-8522-3Juan Pablo Pinasco 2013
16#
發(fā)表于 2025-3-24 07:40:09 | 只看該作者
Lyapunov-type Inequalities978-1-4614-8523-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 12:49:58 | 只看該作者
Juan Pablo PinascoEmphasizes the use of Lyapunov-type inequalities to obtain lower bounds for eigenvalues.Devoted to more general nonlinear equations, systems of differential equations, or partial differential equation
18#
發(fā)表于 2025-3-24 15:05:33 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/l/image/589177.jpg
19#
發(fā)表于 2025-3-24 21:07:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:05 | 只看該作者
2191-8198 of differential equations, or partial differential equation?The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of? eigenvalue asymptotics driven by the couplin
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵川县| 绍兴县| 华安县| 衡山县| 隆子县| 乐都县| 临武县| 根河市| 凤翔县| 哈巴河县| 英吉沙县| 武义县| 监利县| 黎平县| 彭水| 收藏| 富阳市| 平邑县| 新兴县| 南漳县| 宁都县| 仁寿县| 丰顺县| 即墨市| 石城县| 东明县| 阳原县| 麦盖提县| 定结县| 柘城县| 大邑县| 襄樊市| 盘山县| 卓资县| 萨迦县| 大宁县| 蓝田县| 亳州市| 湘阴县| 布拖县| 江川县|