找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 6th International Wo Alexandru Baltag,Jeremy Seligman,Tomoyuki Yamada Conference proceedings 2017 Spri

[復制鏈接]
樓主: Localized
21#
發(fā)表于 2025-3-25 06:06:59 | 只看該作者
The Stubborn Non-probabilist—‘Negation Incoherence’ and a New Way to Block the Dutch Book ArgumentWe rigorously specify the class of nonprobabilistic agents which are, we argue, immune to the classical Dutch Book argument. We also discuss the notion of expected value used in the argument as well as sketch future research connecting our results to those concerning incoherence measures.
22#
發(fā)表于 2025-3-25 11:20:10 | 只看該作者
23#
發(fā)表于 2025-3-25 15:00:01 | 只看該作者
Logic, Rationality, and Interaction978-3-662-55665-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 17:50:58 | 只看該作者
An Extended First-Order Belnap-Dunn Logic with Classical Negation this logic and prove theorems for syntactically and semantically embedding FBD+ into a Gentzen-type sequent calculus for first-order classical logic. Moreover, we show the cut-elimination theorem for FBD+ and prove the completeness theorems with respect to both valuation and many-valued semantics for FBD+.
25#
發(fā)表于 2025-3-25 23:47:35 | 只看該作者
Stability in Binary Opinion Diffusionudied via techniques from binary aggregation, which directly relate to neighborhood frames. It then characterizes stabilization in terms of such neighborhood structures, and shows how the monotone .-calculus can express relevant properties of them. Finally, it illustrates the scope of these results by applying them to specific diffusion models.
26#
發(fā)表于 2025-3-26 01:55:20 | 只看該作者
Doing Without Naturephic image of .. This generalizes an earlier result from Van Benthem and Pacuit [.] about finite two-player choice models. It further strengthens the link between STIT logic and game theory, because deterministic choice models correspond in a straightforward way to normal game forms, and choice models are generally used to interpret STIT logic.
27#
發(fā)表于 2025-3-26 06:31:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:21:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
怀仁县| 阿勒泰市| 沙雅县| 莲花县| 荥经县| 吴江市| 洛阳市| 孝感市| 泗阳县| 长宁区| 晋州市| 阳城县| 云和县| 翼城县| 得荣县| 饶平县| 横峰县| 福海县| 夹江县| 敦化市| 称多县| 古田县| 萝北县| 疏勒县| 上思县| 互助| 乐平市| 揭西县| 象州县| 房产| 繁昌县| 蛟河市| 海南省| 方城县| 新疆| 淮阳县| 平武县| 怀来县| 临桂县| 来凤县| 都匀市|