找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati

[復制鏈接]
查看: 22109|回復: 48
樓主
發(fā)表于 2025-3-21 18:37:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Linear Integral Equations
編輯Ram P. Kanwal
視頻videohttp://file.papertrans.cn/587/586327/586327.mp4
圖書封面Titlebook: Linear Integral Equations;  Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati
描述This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man- uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the f
出版日期Textbook 1997Latest edition
關(guān)鍵詞equations; ksa; mathematics; Boundary value problem; Integral; Integral equation; ordinary differential eq
版次2
doihttps://doi.org/10.1007/978-1-4612-0765-8
isbn_softcover978-1-4612-6893-2
isbn_ebook978-1-4612-0765-8
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Linear Integral Equations影響因子(影響力)




書目名稱Linear Integral Equations影響因子(影響力)學科排名




書目名稱Linear Integral Equations網(wǎng)絡公開度




書目名稱Linear Integral Equations網(wǎng)絡公開度學科排名




書目名稱Linear Integral Equations被引頻次




書目名稱Linear Integral Equations被引頻次學科排名




書目名稱Linear Integral Equations年度引用




書目名稱Linear Integral Equations年度引用學科排名




書目名稱Linear Integral Equations讀者反饋




書目名稱Linear Integral Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:51 | 只看該作者
Classical Fredholm Theory,tion (4.1.1) when the function .(s) and the kernel .(s, t) are any integrable functions. Furthermore, the present method enables us to get explicit formulas for the solution in terms of certain determinants.
板凳
發(fā)表于 2025-3-22 03:15:13 | 只看該作者
Applications to Partial Differential Equations,quations leads to Volterra integral equations. We confine our attention to the linear partial differential equations of the elliptic type, specifically, to the Laplace, Poisson, and Helmholtz equations wherein lie the most interesting and important achievements of the theory of integral equations.
地板
發(fā)表于 2025-3-22 05:19:49 | 只看該作者
5#
發(fā)表于 2025-3-22 10:38:49 | 只看該作者
6#
發(fā)表于 2025-3-22 15:28:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:58 | 只看該作者
8#
發(fā)表于 2025-3-23 00:47:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:47 | 只看該作者
10#
發(fā)表于 2025-3-23 06:24:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
昌邑市| 应用必备| 济南市| 赞皇县| 尖扎县| 龙里县| 吴桥县| 汉川市| 罗源县| 丹凤县| 阿巴嘎旗| 樟树市| 米林县| 密山市| 临湘市| 伊宁县| 手机| 进贤县| 赤壁市| 沙洋县| 招远市| 桦南县| 临汾市| 苏尼特左旗| 手游| 日喀则市| 射洪县| 南靖县| 台北市| 驻马店市| 喜德县| 临海市| 浦城县| 大新县| 宁城县| 湘阴县| 岚皋县| 翁牛特旗| 淮滨县| 绥阳县| 佛坪县|