找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati

[復(fù)制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 12:30:09 | 只看該作者
Applications to Partial Differential Equations,ations arise in finding the solutions of boundary value problems in the theory of partial differential equations of the second order. The boundary value problems for equations of elliptic type can be reduced to Fredholm integral equations, whereas the study of parabolic and hyperbolic differential e
12#
發(fā)表于 2025-3-23 17:23:10 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:20 | 只看該作者
Introduction,An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well.
14#
發(fā)表于 2025-3-23 22:50:58 | 只看該作者
15#
發(fā)表于 2025-3-24 06:00:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:57 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:18 | 只看該作者
Singular Integral Equations,An integral equation is called singular if either the range of integration is infinite or the kernel has singularities within the range of integration. Such equations occur rather frequently in mathematical physics and possess very unusual properties.
18#
發(fā)表于 2025-3-24 14:53:59 | 只看該作者
Integral Transform Methods,The integral transform methods are of great value in the treatment of integral equations, especially the singular integral equations.
19#
發(fā)表于 2025-3-24 21:00:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:59:10 | 只看該作者
http://image.papertrans.cn/l/image/586327.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿瓦提县| 贡嘎县| 鄱阳县| 精河县| 台北市| 鸡西市| 托里县| 泗阳县| 连山| 建始县| 五台县| 南木林县| 蓝山县| 黔南| 汉沽区| 嵊州市| 郑州市| 南部县| 彭州市| 阆中市| 安化县| 扶沟县| 富裕县| 阿拉善左旗| 抚州市| 桓台县| 孟州市| 荥阳市| 桃园市| 上林县| 兖州市| 阳朔县| 常熟市| 辛集市| 厦门市| 昆明市| 灯塔市| 普格县| 台北县| 通化县| 儋州市|