找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Models in Topology; Urtzi Buijs,Yves Félix,Daniel Tanré Book 2020 Springer Nature Switzerland AG 2020 rational homotopy theory.Lie mod

[復(fù)制鏈接]
查看: 51995|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:04:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lie Models in Topology
編輯Urtzi Buijs,Yves Félix,Daniel Tanré
視頻videohttp://file.papertrans.cn/586/585712/585712.mp4
概述Provides new tools to address the problem of extending the Quillen approach to a more general category of spaces.Opens a field of vision to solve old problems and pose new questions.Winner of the 2020
叢書名稱Progress in Mathematics
圖書封面Titlebook: Lie Models in Topology;  Urtzi Buijs,Yves Félix,Daniel Tanré Book 2020 Springer Nature Switzerland AG 2020 rational homotopy theory.Lie mod
描述.Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – ?in terms of Lie algebras – to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.. . In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the?standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions.. . This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics..
出版日期Book 2020
關(guān)鍵詞rational homotopy theory; Lie models; complete Lie algebras; Maurer-Cartan elements; Deligne groupoid; La
版次1
doihttps://doi.org/10.1007/978-3-030-54430-0
isbn_softcover978-3-030-54432-4
isbn_ebook978-3-030-54430-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Lie Models in Topology影響因子(影響力)




書目名稱Lie Models in Topology影響因子(影響力)學(xué)科排名




書目名稱Lie Models in Topology網(wǎng)絡(luò)公開度




書目名稱Lie Models in Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Models in Topology被引頻次




書目名稱Lie Models in Topology被引頻次學(xué)科排名




書目名稱Lie Models in Topology年度引用




書目名稱Lie Models in Topology年度引用學(xué)科排名




書目名稱Lie Models in Topology讀者反饋




書目名稱Lie Models in Topology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:20 | 只看該作者
Urtzi Buijs,Yves Félix,Aniceto Murillo,Daniel Tanréld urgently needs a new body of knowledge and techniques for the mitigation of and response to disaster. Central to such a body of knowledge are disaster preparedness, emergency and crisis management systems of government, of which capacity building is becoming an increasingly important element in p
地板
發(fā)表于 2025-3-22 06:43:02 | 只看該作者
Urtzi Buijs,Yves Félix,Aniceto Murillo,Daniel Tanrén March 11, 2011.Illustrates the socio-economic damage of th.Natural disasters are often multifaceted and cause severe damage. Disasters initiated locally can become national and even global crises. Today’s world urgently needs a new body of knowledge and techniques for the mitigation of and respons
5#
發(fā)表于 2025-3-22 11:38:10 | 只看該作者
6#
發(fā)表于 2025-3-22 13:19:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:41:52 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:08 | 只看該作者
9#
發(fā)表于 2025-3-23 03:14:15 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 南宁市| 凤台县| 龙海市| 沁水县| 普洱| 闸北区| 麻栗坡县| 镇江市| 合山市| 宁强县| 江都市| 鄂托克旗| 太仓市| 沐川县| 井冈山市| 汝州市| 靖江市| 鄱阳县| 乌兰浩特市| 通河县| 漳平市| 航空| 石柱| 察雅县| 黄冈市| 胶南市| 沁水县| 英德市| 嘉荫县| 韩城市| 穆棱市| 秭归县| 东乡| 即墨市| 新龙县| 桃园市| 平定县| 五家渠市| 湖州市| 旌德县|