找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Models in Topology; Urtzi Buijs,Yves Félix,Daniel Tanré Book 2020 Springer Nature Switzerland AG 2020 rational homotopy theory.Lie mod

[復制鏈接]
查看: 51999|回復: 50
樓主
發(fā)表于 2025-3-21 18:04:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Models in Topology
編輯Urtzi Buijs,Yves Félix,Daniel Tanré
視頻videohttp://file.papertrans.cn/586/585712/585712.mp4
概述Provides new tools to address the problem of extending the Quillen approach to a more general category of spaces.Opens a field of vision to solve old problems and pose new questions.Winner of the 2020
叢書名稱Progress in Mathematics
圖書封面Titlebook: Lie Models in Topology;  Urtzi Buijs,Yves Félix,Daniel Tanré Book 2020 Springer Nature Switzerland AG 2020 rational homotopy theory.Lie mod
描述.Since the birth of rational homotopy theory, the possibility of extending the Quillen approach – ?in terms of Lie algebras – to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.. . In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the?standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions.. . This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics..
出版日期Book 2020
關鍵詞rational homotopy theory; Lie models; complete Lie algebras; Maurer-Cartan elements; Deligne groupoid; La
版次1
doihttps://doi.org/10.1007/978-3-030-54430-0
isbn_softcover978-3-030-54432-4
isbn_ebook978-3-030-54430-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Lie Models in Topology影響因子(影響力)




書目名稱Lie Models in Topology影響因子(影響力)學科排名




書目名稱Lie Models in Topology網(wǎng)絡公開度




書目名稱Lie Models in Topology網(wǎng)絡公開度學科排名




書目名稱Lie Models in Topology被引頻次




書目名稱Lie Models in Topology被引頻次學科排名




書目名稱Lie Models in Topology年度引用




書目名稱Lie Models in Topology年度引用學科排名




書目名稱Lie Models in Topology讀者反饋




書目名稱Lie Models in Topology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:06:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:20 | 只看該作者
Urtzi Buijs,Yves Félix,Aniceto Murillo,Daniel Tanréld urgently needs a new body of knowledge and techniques for the mitigation of and response to disaster. Central to such a body of knowledge are disaster preparedness, emergency and crisis management systems of government, of which capacity building is becoming an increasingly important element in p
地板
發(fā)表于 2025-3-22 06:43:02 | 只看該作者
Urtzi Buijs,Yves Félix,Aniceto Murillo,Daniel Tanrén March 11, 2011.Illustrates the socio-economic damage of th.Natural disasters are often multifaceted and cause severe damage. Disasters initiated locally can become national and even global crises. Today’s world urgently needs a new body of knowledge and techniques for the mitigation of and respons
5#
發(fā)表于 2025-3-22 11:38:10 | 只看該作者
6#
發(fā)表于 2025-3-22 13:19:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:41:52 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:08 | 只看該作者
9#
發(fā)表于 2025-3-23 03:14:15 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
濮阳市| 大竹县| 佳木斯市| 阜城县| 桦南县| 临沂市| 四子王旗| 利津县| 德保县| 乐业县| 昭觉县| 安陆市| 盐边县| 蒙城县| 江城| 天镇县| 龙里县| 南靖县| 竹北市| 鹿邑县| 扶余县| 龙里县| 黑龙江省| 云浮市| 正蓝旗| 凤庆县| 吐鲁番市| 洛宁县| 故城县| 博客| 阳西县| 黔东| 乐清市| 禹州市| 孝昌县| 商水县| 肇州县| 富锦市| 阿合奇县| 郁南县| 郧西县|