找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups, Geometry, and Representation Theory; A Tribute to the Lif Victor G. Kac,Vladimir L. Popov Book 2018 Springer Nature Switzerland

[復制鏈接]
樓主: 召集會議
11#
發(fā)表于 2025-3-23 11:51:55 | 只看該作者
12#
發(fā)表于 2025-3-23 14:15:14 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:55 | 只看該作者
Generalized Bruhat Cells and Completeness of Hamiltonian Flows of Kogan-Zelevinsky Integrable Systed to be Poisson, and they provide global coordinates on double Bruhat cells, called ., in which all the Fomin-Zelevinsky minors become polynomials and the Poisson structure can be computed explicitly.
14#
發(fā)表于 2025-3-23 23:43:57 | 只看該作者
Distributions on Homogeneous Spaces and Applications,e conjecture that [.]⊙. = σ.⊙.σ.. We give some evidence for this conjecture, and prove special cases..Finally, we use the subbundles of ./. to give a geometric characterization of the .-homogeneous locus of any Schubert subvariety of ./..
15#
發(fā)表于 2025-3-24 02:27:17 | 只看該作者
Book 2018kshych).Nil-Hecke algebras and Whittaker .D.-modules (V. Ginzburg).Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang).Kashiwara crystals (A. Joseph).Characters of highest weight modules (V. Kac, M. Wakimoto).Alcove polytopes (T. Lam, A. Postnikov).Representation theory of quantized Gieseker variet
16#
發(fā)表于 2025-3-24 08:13:38 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:34 | 只看該作者
V. Guillemin,A. Uribe,Z. Wangpanese urban systems, the strengthening of ties among cities and associated factors, and the expansion of socioeconomic exchanges with cities overseas, from a p978-90-481-5573-6978-94-017-2006-9Series ISSN 0924-5499 Series E-ISSN 2215-0072
19#
發(fā)表于 2025-3-24 19:34:20 | 只看該作者
Anthony Josephpanese urban systems, the strengthening of ties among cities and associated factors, and the expansion of socioeconomic exchanges with cities overseas, from a p978-90-481-5573-6978-94-017-2006-9Series ISSN 0924-5499 Series E-ISSN 2215-0072
20#
發(fā)表于 2025-3-25 01:14:41 | 只看該作者
https://doi.org/10.1007/978-3-030-02191-7Bertram Kostant; Transformation groups; Lie groups; Representation theory; Bert Kostant; Kac-Moody algebr
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇义县| 江津市| 乌兰察布市| 黔东| 富锦市| 合川市| 常州市| 曲阜市| 阳泉市| 唐海县| 石景山区| 清水河县| 宁波市| 阿尔山市| 府谷县| 镇巴县| 重庆市| 大新县| 黄龙县| 金堂县| 玉环县| 大港区| 江门市| 泗洪县| 嘉义市| 谷城县| 昌黎县| 滨州市| 松桃| 炉霍县| 大城县| 洪江市| 云梦县| 台前县| 定兴县| 柳林县| 安新县| 沿河| 嘉黎县| 左云县| 乌拉特前旗|