找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 13:12:35 | 只看該作者
Haar MeasureIf . is a locally compact group, there is, up to a constant multiple, a unique regular Borel measure .. that is invariant under left translation. Here . means that .(.) = .(.) for all measurable sets ..
12#
發(fā)表于 2025-3-23 17:36:00 | 只看該作者
Schur OrthogonalityIn this chapter and the next two, we will consider the representation theory of compact groups. Let us begin with a few observations about this theory and its relationship to some related theories.
13#
發(fā)表于 2025-3-23 19:49:22 | 只看該作者
Compact OperatorsIf . is a normed vector space, a linear operator . is called . if there exists a constant . such that . for all .. In this case, the smallest such . is called the . of ., and is denoted |.|.
14#
發(fā)表于 2025-3-23 22:27:43 | 只看該作者
The Peter–Weyl TheoremIn this chapter, we assume that . is a compact group. Let .(.) be the convolution ring of continuous functions on .. It is a ring (without unit unless . is finite) under the multiplication of .:
15#
發(fā)表于 2025-3-24 06:00:29 | 只看該作者
16#
發(fā)表于 2025-3-24 10:10:52 | 只看該作者
The Exponential MapThe exponential map, introduced for closed Lie subgroups of . in ., can be defined for a general Lie group . as a map Lie(.) → ..
17#
發(fā)表于 2025-3-24 13:45:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:27 | 只看該作者
19#
發(fā)表于 2025-3-24 20:04:27 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:16 | 只看該作者
The Universal CoverIf . is a Hausdorff topological space, a . is a continuous map . : [0,1].. The path is . if the endpoints coincide : .(0) = .(1). A closed path is also called a ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 灵石县| 区。| 府谷县| 寿宁县| 湖州市| 南雄市| 军事| 涞源县| 芮城县| 彭泽县| 汤原县| 佛学| 综艺| 六盘水市| 弥渡县| 息烽县| 文登市| 新沂市| 葵青区| 上虞市| 南澳县| 西丰县| 永善县| 泰安市| 石景山区| 嘉禾县| 顺平县| 托克托县| 福清市| 田林县| 宁河县| 康保县| 安新县| 大同市| 克什克腾旗| 准格尔旗| 岢岚县| 民乐县| 隆德县| 民乐县|