找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f

[復制鏈接]
查看: 21070|回復: 58
樓主
發(fā)表于 2025-3-21 17:21:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Groups
編輯Daniel Bump
視頻videohttp://file.papertrans.cn/586/585693/585693.mp4
概述New edition extensively revised and updated.Includes new material on random matrix theory, such as the Keating-Snaith formula.Contains material on the use of Sage for Lie group problems.Includes more
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Lie Groups;  Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f
描述.This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one‘s interests.?This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition..For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(.n.)?×?GL(.m.) duality with many applications includ
出版日期Textbook 2013Latest edition
關鍵詞Frobenius-Schur duality; Keating-Snaith formula; Lie algebras; Lie groups; complex analytic groups; conju
版次2
doihttps://doi.org/10.1007/978-1-4614-8024-2
isbn_softcover978-1-4939-3842-1
isbn_ebook978-1-4614-8024-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Lie Groups影響因子(影響力)




書目名稱Lie Groups影響因子(影響力)學科排名




書目名稱Lie Groups網(wǎng)絡公開度




書目名稱Lie Groups網(wǎng)絡公開度學科排名




書目名稱Lie Groups被引頻次




書目名稱Lie Groups被引頻次學科排名




書目名稱Lie Groups年度引用




書目名稱Lie Groups年度引用學科排名




書目名稱Lie Groups讀者反饋




書目名稱Lie Groups讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:24:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:30 | 只看該作者
地板
發(fā)表于 2025-3-22 07:28:36 | 只看該作者
5#
發(fā)表于 2025-3-22 11:55:40 | 只看該作者
Lie Groups978-1-4614-8024-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
6#
發(fā)表于 2025-3-22 15:38:03 | 只看該作者
7#
發(fā)表于 2025-3-22 17:56:57 | 只看該作者
8#
發(fā)表于 2025-3-22 23:14:12 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:24 | 只看該作者
Geodesics and Maximal Torill deduce it from the surjectivity of the exponential map, which we will prove by showing that a geodesic between the origin and an arbitrary point of the group has the form . for some . in the Lie algebra.
10#
發(fā)表于 2025-3-23 08:37:10 | 只看該作者
The Weyl Integration Formulae to compute the Haar integral of a class function (e.g., the inner product of two characters) as an integral over the torus. The formula that allows this, the ., is therefore fundamental in representation theory and in other areas, such as random matrix theory.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
化州市| 岑巩县| 铜鼓县| 云梦县| 城步| 留坝县| 瑞金市| 雷波县| 商河县| 福泉市| 略阳县| 昌黎县| 宁武县| 缙云县| 紫金县| 通许县| 大悟县| 曲麻莱县| 崇阳县| 大姚县| 颍上县| 旺苍县| 高安市| 茂名市| 桃江县| 忻城县| 衡阳市| 宁都县| 石嘴山市| 儋州市| 武邑县| 雅江县| 肇源县| 石河子市| 垦利县| 罗平县| 阿拉善右旗| 安多县| 无极县| 宣城市| 湘乡市|