找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lern- und Netzeffekte im asymmetrischen Duopol; Harald Wiese Book 1993 Physica-Verlag Heidelberg 1993 Arbeit.Güter.Produktion.Simulation

[復制鏈接]
樓主: Negate
61#
發(fā)表于 2025-4-1 03:37:38 | 只看該作者
Harald Wiese (CV) is unknown because the population mean and variance are unknown. In this study, the common mean of Gaussian distributions with unknown CVs is considered and four new interval estimators for it using generalized confidence interval (GCI), large sample (LS), adjusted method of variance estimates
62#
發(fā)表于 2025-4-1 07:54:29 | 只看該作者
63#
發(fā)表于 2025-4-1 11:08:05 | 只看該作者
Harald Wieseaboration, group formation is one of the critical factors. It often requires preparation by a teacher. In this study, to help a teacher selection grouping, we propose the models for group formation based on the principles: intra- or inter-group homogeneity or heterogeneity. It depends on the situati
64#
發(fā)表于 2025-4-1 15:57:03 | 只看該作者
Harald Wiese (CV) is unknown because the population mean and variance are unknown. In this study, the common mean of Gaussian distributions with unknown CVs is considered and four new interval estimators for it using generalized confidence interval (GCI), large sample (LS), adjusted method of variance estimates
65#
發(fā)表于 2025-4-1 19:50:18 | 只看該作者
Harald Wiesel through the GJR-GARCH model (Glosten, Jagannathan and Rundle-generalized autoregressive conditional heteroskedasticity model) and introduce the infinite pure-jump Levy process into the asset return rate model to improve the model’s accuracy. Then, to be more consistent with reality and include mor
66#
發(fā)表于 2025-4-2 00:28:49 | 只看該作者
Harald Wiesel through the GJR-GARCH model (Glosten, Jagannathan and Rundle-generalized autoregressive conditional heteroskedasticity model) and introduce the infinite pure-jump Levy process into the asset return rate model to improve the model’s accuracy. Then, to be more consistent with reality and include mor
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 01:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
望江县| 凉山| 都安| 东莞市| 南宫市| 苏尼特左旗| 新宁县| 茶陵县| 常州市| 墨脱县| 闸北区| 佛学| 黄石市| 介休市| 惠州市| 临猗县| 双辽市| 合江县| 潜江市| 电白县| 保靖县| 黄浦区| 昭平县| 宜城市| 临夏市| 霍林郭勒市| 鄂托克旗| 普安县| 定兴县| 平湖市| 孟州市| 隆子县| 永吉县| 两当县| 美姑县| 台湾省| 巨鹿县| 固原市| 怀柔区| 昭苏县| 西乌|